
Online Algorithms for Warehouse Management1

Philip Dasler2

Department of Computer Science, University of Maryland, College Park3

daslerpc@cs.umd.edu4

David M. Mount5

Department of Computer Science, University of Maryland, College Park6

mount@umd.edu7

Abstract8

As the prevalence of E-commerce continues to grow, the efficient operation of warehouses and9

fulfillment centers is becoming increasingly important. To this end, many such warehouses are10

adding automation in order to help streamline operations, drive down costs, and increase overall11

efficiency. The introduction of automation comes with the opportunity for new theoretical models12

and computational problems with which to better understand and optimize such systems.13

These systems often maintain a warehouse of standardized portable storage units, which are14

stored and retrieved by robotic workers. In general, there are two principal issues in optimizing15

such a system: where in the warehouse each storage unit should be located and how best to retrieve16

them. These two concerns naturally go hand-in-hand, but are further complicated by the unknown17

request frequencies of stored products. Analogous to virtual-memory systems, the more popular18

and oft-requested an item is, the more efficient its retrieval should be. In this paper, we propose a19

theoretical model for organizing portable storage units in a warehouse subject to an online sequence20

of access requests. We consider two formulations, depending on whether there is a single access21

point or multiple access points. We present algorithms that are O(1)-competitive with respect to an22

optimal algorithm. In the case of a single access point, our solution is also asymptotically optimal23

with respect to density.24

2012 ACM Subject Classification Theory of computation → Computational geometry25

Keywords and phrases Warehouse management, online algorithms, competitive analysis, robotics26

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2019.5927

Funding David M. Mount: Research supported by NSF grant CCF–1618866.28

Keywords: Warehouse management, online algorithms, competitive analysis, robotics29

1 Introduction30

Online shopping has grown rapidly in recent years and, as such, the efficiency of the31

warehouses and fulfillment centers that support it plays an increasingly important role.32

Several companies have developed automated systems to help streamline operations in these33

warehouses, drive down the costs of order fulfillment, and increase overall efficiency. The34

introduction of automation comes with the opportunity for new theoretical models and35

computational problems with which to better understand and optimize such systems.36

These systems often maintain a warehouse of standardized portable storage units, which37

are stored and retrieved by robots [12, 14]. For example, Amazon’s Kiva robots and Alibaba’s38

Quicktron robots help to streamline the order-fulfillment process. The Amazon robots are 1639

inches tall, weigh almost 145 kilograms, can travel at 5 mph, and carry a payload weighing40

up to 317 kilograms. These robots maneuver themselves under standardized shelving units,41

lift them from below, and carry them to a location in the warehouse where a human waits to42

complete an order with items from the shelf.43

The frequency with which each storage unit is accessed varies, and so, intuitively, units44

that are accessed more often should be placed closer to the access points than those that are45

© P. Dasler and D. M. Mount;
licensed under Creative Commons License CC-BY

30th International Symposium on Algorithms and Computation (ISAAC 2019).
Editors: Pinyan Lu and Guochuan Zhang; Article No. 59; pp. 59:1–59:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7442-7216
mailto:daslerpc@cs.umd.edu
https://orcid.org/0000-0002-3290-8932
mailto:mount@umd.edu
https://doi.org/10.4230/LIPIcs.ISAAC.2019.59
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Online Algorithms for Warehouse Management

less frequently accessed. As access probabilities vary over time, there is a natural question of46

how to dynamically organize the warehouse’s placement of storage units in order to guarantee47

efficient access at any time. In this paper we will develop a simple computational model48

for a “self-organizing warehouse,” and we present online algorithms for solving them. We49

demonstrate that our algorithms are competitive with optimal algorithms in our model. Our50

work can be viewed as a geometric variant of online algorithms for self-organizing lists and51

virtual memory management systems [1, 19].52

From a practical perspective there are many ways in which to model objects residing in53

a warehouse. In order to obtain meaningful theoretical results without imposing irrelevant54

technical details, we propose a very simple and general model, which encapsulates the most55

salient aspects of efficient self-organizing behavior. We model storage units, or boxes, as56

movable unit squares on a grid in the plane. In addition to the boxes, there are designated57

fixed points, called access points, where boxes are brought on demand. The input consists of58

a sequence of access requests, each specifying that a particular box in the system be moved59

to a given access point.60

There are two natural ways in which to move boxes in a planar setting, picking them61

up (like cargo containers by an overhead crane) and sliding them along the ground (like the62

aforementioned robotic systems). The former is simpler to describe and analyze. The latter63

is more realistic and is consistent with other motion-planning models [11, 10]. Another issue64

is the geometrical configuration of the warehouse and the locations of the access points. We65

present clean and simple models based on infinite and semi-infinite grids and show how to66

generalize our solutions to rectangular warehouses.67

We consider two versions of the problem: the attic problem, where there is a single access68

point and the warehouse problem, where there are multiple access points. In each version69

and for each motion type, we present an online algorithm that is competitive with respect to70

an optimal solution that has knowledge of the entire access sequence. Details of the problem71

formulations and results are given in the next section.72

1.1 Model and Results73

We model a warehouse as a rectangular subset Ω of Z2, the square grid in the plane.74

Throughout, distances are measured in the `1 metric (the sum of absolute differences in x75

and y coordinates). We are given a finite set A = {a1, . . . , am} ⊆ Ω of stationary access76

points and a (significantly larger) finite set B = {b1, . . . , bn} of portable storage units, called77

boxes. Each box is a unit square. At any time, its lower left corner coincides with a grid78

point in Ω, called its location. A point of Ω that contains a box is said to be occupied, and79

otherwise it is unoccupied. No two boxes may occupy the same location at the same time.80

The initial layout of the boxes is specified in the input. This is followed by a sequence of81

access requests, each being a pair (b, a), which involves moving box b ∈ B from its current82

location to access point a ∈ A. Access requests are processed sequentially, meaning that83

each request is completed before the next one is started. Since the access point may already84

be occupied, it will be necessary to reorganize box locations. This reorganization should be85

performed with care, keeping frequently accessed boxes near the access point and moving less86

frequently accessed boxes to the periphery. The challenge is that we do not know the future87

access sequence, and yet we wish to be competitive with an optimal algorithm that does.88

In general, the reorganization following each access request will involve a sequence of89

box movements. The box at the access point is displaced to a nearby location, the box at90

this location is then displaced to a new location, and so on. This chain of box movements91

continues until the last box in the chain arrives at an unoccupied square of the grid, possibly92

P. Dasler and D. M. Mount 59:3

the original location of the requested box. More formally, let p0 denote the original location93

of b, and let p1 denote the location of a. If a is not occupied, b is simply moved here, and94

we are done. Otherwise, the algorithm determines a chain p2, . . . , pk of locations, where95

p2, . . . , pk−1 are occupied and pk is unoccupied (see Fig. 1(a)). (Note that p0 is considered96

to be unoccupied, because its box has been moved to the access point.) We call this a97

reorganization chain. If pk 6= p0, this is an open chain (see Fig. 1(b)), and otherwise it is a98

closed chain (see Fig. 1(c)).99

(a) (c)

Request

(b)

Open chain

b p0

p1

p2
p3

p4

p5

a

Closed chain

p0

p1

p2
p3

p4

Figure 1 Processing a request.

For the sake of presenting our algorithms, it will be useful to describe the relocation100

process in terms of a sequence of motion primitives. In the case where boxes can be picked up101

(as by an overhead crane), the primitive operation is a swap, which exchanges the contents of102

two grid squares. The cost of the operation is the `1 distance between the two locations. The103

aforementioned reorganization involving a chain 〈p0, . . . , pk〉 (whether open or closed) can be104

executed by swapping boxes in reverse order along the chain, that is, pk ↔ pk−1 ↔ · · · ↔ p0105

(see Fig. 2(a)).106

(a) (b)

p1

p2
p3

p4
p1

p2
p3

p4

p0 p0

SlidingSwapping

p1
p2

p3

p4

p0

p1
p2

p3

p4

p0

Figure 2 Motion primitives.

Alternatively, when boxes are moved along the ground the associated primitive operation107

is called sliding. As with swapping, the contents of two grid locations are swapped, but the108

boxes are moved along a rectilinear path of unoccupied grid locations (see Fig. 2(b)). The109

cost of the operation is the `1 length of the path, which may generally be much higher than110

the `1 distance between the two locations.111

Sliding motion is more relevant in contexts where the boxes are being moved by robots,112

but it is complicated by the need to create empty space in which to move boxes. Our solutions113

will be based on first presenting a simple swapping-based solution and then showing how to114

adapt this to sliding motion without significantly increasing the cost. These two primitives115

provide a conceptually clear and simple model of motion costs. Of course, in practice, many116

other realistic issues would need to be considered.117

ISAAC 2019

59:4 Online Algorithms for Warehouse Management

Our problem formulations involve a problem instance, which consists of a specification118

of the domain Ω and the locations of the m access points A. An input to a given instance119

consists of the initial locations of the n boxes followed by a sequence S of access requests.120

For each access request, the output consists of the sequence 〈p0, . . . , pk〉 along which motion121

primitives are applied (either swapping or sliding, depending on the model). Since our focus122

is on reorganization strategies, we ignore a number of issues needed for a complete model,123

such as how to coordinate the movement of multiple robots. We focus on two versions of the124

problem depending on the number of access points (see Fig. 3):125

Attic Problem: Ω is an axis-aligned rectangle containing a single access point.126

Warehouse Problem: Ω is an axis-aligned rectangle with access points on its bottom side.127

boxes

a1 a2 a3 a4 a5 access points

access point

Attic Problem Warehouse Problem
Ω

Ω

Figure 3 Problem versions.

We consider the above problems in an online setting, which means that each access request128

is processed without knowledge of future requests. In contrast, in an offline setting the entire129

access sequence is known in advance. An online algorithm is said to be c-competitive for a130

constant c ≥ 1, called the competitive ratio, if for all sufficiently long access sequences S, the131

total cost of this algorithm is at most a factor c larger than the cost of an optimal offline132

solution for the same sequence. We say that an algorithm is competitive if it is c-competitive133

for some constant c, independent of m, n, the size of the domain, and the length of the134

access sequence. (The competitive ratios that result from our analyses are relatively high,135

and we suspect that they are far from tight. Reducing them will involve establishing better136

lower bounds on the optimum algorithm, and this seems to be quite challenging.) The notion137

of “sufficiently long access sequence” allows us to ignore start-up issues, such as the initial138

locations of the boxes.139

Our main results are competitive online algorithms for these two problems in both140

the swapping- and sliding-motion models (presented in Theorems 1, 9, 10, and 12). Our141

result for the attic problem has the additional feature of being asymptotically optimal142

with respect to box density. (The precise definition will be given in Section 2.3.) These143

online algorithms exploit an intriguing connection between these problems and the task of144

maintaining hierarchical memory systems [1]. Hierarchical memory systems are linear in145

nature, and the geometric context of the our problems introduces novel challenges, since the146

reorganization must take into account the 2-dimensional locations of the boxes. Also, when147

sliding is involved, it is necessary to manage the set of unoccupied squares to guarantee short148

access paths.149

P. Dasler and D. M. Mount 59:5

1.2 Prior Work150

There have been a number of papers devoted to the problem of organizing storage units in151

warehouses. Much of the prior work has focused on solving the various engineering challenges152

involved.153

For example, Amato et al. [2] study control algorithms for the warehouse robots, assuming154

a continuous distribution of item locations throughout the warehouse and ignoring the155

benefits of intelligent item placement. In a similar vein, Chang et al. [5] attempt to minimize156

unnecessary task repetition using genetic algorithms, thus shortening robot travel times, but157

assume a fixed storage scheme regardless of differing access frequencies. Sarrafzadeh and158

Maddila [17] use a discrete grid-based model, as we will, but their focus is still an engineering159

one, concerned primarily with robot path-finding and constructing clearings through which160

to move. Closer to our work, Pang and Chan [16] address the question of where certain161

items should be stored in the warehouse, proposing a data-mining approach to determine162

the relationships between products and co-locating those that are often purchased together.163

Experimental analysis shows that their methodology outperforms a simple greedy policy, but164

they do not present any proofs on the performance of their approach.165

The word “warehouse” has been used for various optimization problems. In the context166

of operations research, the warehouse problem was proposed by Cahn [3] and later refined167

and extended by Charnes and Cooper [6] and Wolsey and Yaman [20]. This work may sound168

related to ours, but its focus is on the logistics of managing a warehouse’s stock in the face of169

changing demand. The word is also used in the context of coordinated motion planning under170

the name of the warehouseman’s problem. This is a multi-agent motion planning problem171

amidst obstacles. It has been shown to be PSPACE-hard [11, 10], but efficient solutions exist172

for restricted versions (see, e.g., [18]).173

While our approach is theoretical in nature, we avoid the high complexity of the ware-174

houseman’s problem by restricting shapes of boxes (to unit squares) and the allowed layout of175

boxes (by introducing additional empty working space throughout to facilitate easy motion).176

The problems we study are less focused on motion planning and more on how to organize177

the warehouse’s contents to ensure efficient processing of a series of access requests.178

More closely related to our work is the dial-a-ride problem [7]. In this problem, a set179

of users must be conveyed from source locations to specified destinations in a metric space.180

The goal is to plan a route (or routes, in the case of multiple vehicles or the more general181

k-server problem [13]) that satisfies all transportation requests while minimizing total distance182

traveled. One key difference is that the source locations are fully specified by the problem183

input, whereas in the warehouse problem the location of requested boxes can be adjusted184

according to need, and how best to do so is central to the problem.185

As mentioned earlier, our work is similar in spirit to online algorithms for self-organizing186

memory structures [1, 19]. Another example is the work of Fekete and Hoffmann [8], who187

consider the online problem of packing variously sized squares into a dynamically sized square188

container.189

2 Online Solution to the Attic Problem190

In this section we present an online algorithm for the attic problem (single access point).191

We will show that the resulting scheme is competitive with respect to an optimal algorithm.192

As mentioned above, we exploit ideas from hierarchical memory systems. In such systems,193

memory consists of objects called pages, which are organized into blocks, called caches.194

Successive caches have higher storage capacity but higher access times. A common method195

ISAAC 2019

59:6 Online Algorithms for Warehouse Management

for organizing such memory structures involves a block-based version of the least-recently196

used (LRU) policy, called Block-LRU of Aggarwal et al. [1]. In this policy, whenever a page197

is accessed it is brought to the lowest level cache, and the page that has resided in this198

cache for the longest time is evicted to the next higher level cache. The process is repeated199

until reaching the lowest cache that has space to hold this page, possibly the cache that200

contained the originally requested page. We next describe how the Block-LRU algorithm201

can be adapted to our geometric setting.202

2.1 Hierarchical Model203

In hierarchical memory systems, the cost of accessing an object is purely a function of204

each cache’s speed. In our geometric context, the cost depends on the total cost of the205

motion primitives, which depends on the `1 distances between the locations of the boxes in206

the reorganization chain. The principal challenge is adapting the cache-based cost to the207

geometric setting. Our approach to the attic problem is based on surrounding the access point208

by collection of nested regions, called containers. Analogous to caches in the hierarchical209

memory systems, containers that are closer to the access point provide faster access but have210

lower storage capacity compared with those farther out.211

It will simplify matters to describe the solution first for the infinite grid. We define a212

hierarchical model, which is based on an infinite sequence of nested containers, C0, C1, . . .,213

where C0 consists only of the origin (the access point), and for k ≥ 1, Ck consists of the214

points of Z2 that whose `1 distance from the origin varies from 2k−1 + 1 to 2k (see Fig. 4215

below). Whenever a box b is requested, it is first moved to the access point, and then a216

series of evictions takes place, where, for k = 0, 1, . . . a box from container Ck is moved to217

container Ck+1. The precise manner in which this is done for swapping and sliding motions218

is explained in Sections 2.2 and 2.3, respectively.219

2.2 Online Algorithm for Swapping Motion220

In this section we present an online algorithm solving the attic problem in the case of221

swapping motion, called Block-LRUA. Consider a request for a box b. If the access point222

is unoccupied, we simply move the box there. Otherwise, in order to make space for b, we223

evict the least-recently accessed box from C0, C1, and so on until we encounter the first224

container Ck that has at least one unoccupied location (including possibly b’s location at225

the time of the request). More formally, let pb denote b’s location, let p0 denote the access226

point (origin), and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of227

containers C1 through Ck−1, respectively. Finally, let pk ∈ Ck denote the final unoccupied228

location (possibly the former location of b). As described in Section 1.1, we achieve this by229

performing swaps in reverse order pk ↔ pk−1 ↔ · · · ↔ p0 ↔ pb (see Fig. 4(a)). The cost is230

the sum of the `1 distances between consecutive pairs.231

In order to apply this for a rectangular domain Ω, we simply clip the boundary of the232

containers at the limits of Ω (see Fig. 4(b)). We show next that this is competitive.233

I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence234

R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,235

assuming swapping motion.236

Due to space limitations, the full proof and competitive analysis appear in Appendix A.1.237

In essence, the containers are treated as the caches of a memory hierarchy and then the238

standard LRU analysis of [19] and the Block-LRU analysis of [1] are adapted to our case.239

P. Dasler and D. M. Mount 59:7

C1

C3
C2

C4 C5
pb

(a) (b)

C1

C5pk

pk−1

pk

pk−1

pb
C4

C3
C2

p0 p0

Figure 4 (a) Nested containers for the attic problem and (b) restriction to a rectangular domain.

2.3 Online Algorithm for Sliding Motion240

In order to accommodate the added constraints involved in sliding boxes around the space,241

we constrain the manner in which boxes are arranged throughout the domain in order to242

retrieve them efficiently. An obvious solution would be to arrange the boxes in rows connected243

by empty corridors, as in typical warehouses. However, this is not efficient asymptotically,244

because it implies that the number of unoccupied squares in any region of space is at least245

a constant fraction of the available space. We will adopt a more space-efficient approach246

by packing distant boxes more densely. While these distant boxes will require more cost to247

access, this cost can be amortized against the cost incurred by their distance from the access248

point.249

To make this formal, we define a layout scheme to be a subset of the integer grid Z2,250

which we will think of as a subset of the unit squares. For each integer s, define n(s) to be251

the number of squares of the layout that lie within an s× s square that is centered about252

origin. Define the asymptotic density to be the limiting ratio of the fraction of squares in the253

layout lying within such origin-centered squares, that is, lims→∞ n(s)/s2. For example, the254

layout that places boxes at every point of the grid has an optimal asymptotic density of 1,255

and a layout that places boxes only on the white squares of an infinite chessboard has an256

asymptotic density of 1/2.257

In this section, we describe a layout that achieves the optimal asymptotic density of 1258

and show how to convert our swapping-based Block-LRUA algorithm to the sliding context259

at the expense of an additional constant factor in cost.260

2.3.1 The Nicomachus Layout261

Out layout scheme inspired by a well-known visual proof of Nicomachus’s Theorem [15],262

which is shown in Fig. 5(a).1 The grid is partitioned into expanding concentric rings of263

square regions, denoted r1, r2, The innermost ring, r1, consists of 4 unit squares. Ring264

r2 consists of eight copies of a 2× 2 square region surrounding r1. In general, rk consists of265

1 Nicomachus’s Theorem states that
∑n

k=1 k3 =
(∑n

k=1 k
)2. If both sides of the equation are multiplied

by 4, the layout of Fig. 5(a) provides a proof, where the left side arises by summing the number of
blocks ring-by-ring (the kth ring has 4k blocks, each with k2 squares) and the right side comes from the
overall area (since the side length of the nth ring is n(n + 1) = 2

∑n

k=1 k).

ISAAC 2019

59:8 Online Algorithms for Warehouse Management

4k copies of a k × k square region surrounding rk−1.266

(a) (b) (c)

Figure 5 (a) A geometric tiling based on Nicomachus’s Theorem, (b) the associated layout
scheme, and (c) restricted to a rectangular domain.

Our layout for the warehouse problem, called the Nicomachus layout, is constructed as267

follows. For each ring rk of the aforementioned structure and for each k × k square region268

of this ring, we include the (k − 1) × (k − 1) unit squares in the upper left corner in the269

layout (shaded in Fig. 5(b).) Each of these is called a block. We designate the upper-left270

cell of ring r1 to be the access point. Finally, to accommodate a rectangular domain Ω, we271

clip the layout to the boundary of the rectangle and remove the layout squares touching the272

domain’s boundary, thus creating corridors along the domain walls (see Fig. 5(c)). Observe273

that each block is surrounded by corridors that are one square wide. We show next that this274

layout achieves an optimal asymptotic density.275

I Lemma 2. The Nicomachus layout achieves an asymptotic density of 1.276

Proof. It suffices to show that the asymptotic wastage, that is, the asymptotic density of the277

complement of the Nicomachus layout is equal to zero. To see this, consider the first ` ≥ 1278

rings of the layout. Each ring rk, 1 ≤ k ≤ `, consists of 4k blocks, each of size (k−1)×(k−1).279

The unused space per block is k2− (k− 1)2 = 2k− 1. Thus, the total wasted space for ring k280

is 4k(2k− 1). Summing over all rings, the total wastage is
∑`

k=1 4k(2k− 1) = 8`3/3 +O(`2).281

The first ` rings fill an origin-centered square of side length `(` + 1), which yields a total282

area of at least `4. Therefore, ignoring lower-order terms, the wastage for these rings is at283

most (8`3/3)/`4 = 8/3`. Clearly, this tends to zero in the limit. (Expressed as a function of284

n, the asymptotic density is the limit of 1− 8/(3n1/4).) J285

2.3.2 Accessing a Box286

In order to access a box in the warehouse a robot must first travel to the block in which that287

box resides, retrieve it from the block, and then return it to the access point. The depth d of288

a box is defined to be the minimum number of boxes between it and the boundary of the289

block that contains it. So, a box on the perimeter of a block has depth d = 0, while one at290

the center of a block in ring ri has depth d =
⌊

i−2
2
⌋
. (When the domain Ω is bounded, this291

is an upper bound since peripheral blocks may be clipped.)292

In the Nicomachus layout, the cost of reaching a box in the arrangement and retrieving293

it from a block are both a function of the ring in which it resides. Let M(ri) denote the294

maximum cost of moving the robot from the access point to any cell adjacent to a block of295

P. Dasler and D. M. Mount 59:9

ring ri, and let C(ri) be the maximum cost of retrieving a box from a block in ring ri. First,296

let us consider the travel cost of reaching a cell on the perimeter of a block of boxes.297

I Lemma 3. Travelling from the access point to any cell adjacent to a block in ring ri298

requires at most i2 + i steps.299

Proof. To reach a box on the perimeter of a block in ring ri from the access point a robot300

must traverse each ring k ≤ i by circumnavigating one of its blocks. It is easy to see that a301

robot can move between any two cells adjacent to a (k − 1)× (k − 1) block of ring rk in 2k302

steps, from which we conclude that the total travel time is303

M(ri) ≤
i∑

k=1
2k = i(i+ 1) ≤ i2 + i.304

J305

An equivalent distance is traveled to return the requested box to the access point.306

Next, let us define a primitive Replace(d) that allows for the swapping of a box bi placed307

in the aisle adjacent to a block B with a box bj ∈ B at depth d. For now we will use this308

primitive to establish an upper bound on the cost of accessing a box, while the need for309

actually swapping boxes will not become apparent until later. Conceptually, the Replace310

primitive must unbury the target box by moving the d boxes in the way. It does so by moving311

them each d+ 1 spaces away, retrieving the target box, and then replacing them for a total312

cost O(d2). A more careful analysis yields the following.313

Agent box movement agent movement

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

2

1

2 2

1 1 2 1

2

2 1 2 1 2 1 1

2

1

2 1

Figure 6 Swapping a pair of boxes, where the original box is at depth d = 2 within a 7× 7 block
in ring r8.

I Lemma 4. The cost of Replace(d) is at most 4d2 + 8d+ 6, where d is the depth of box bj .314

Proof. First, number the boxes inward from box bj ’s nearest boundary from 1 to d. We315

assume that the robot begins adjacent to box 1 and that box bi is adjacent to the robot.316

Next, we iteratively move each of the d+ 1 boxes (the d labeled boxes plus bj) to a location317

that is d + 2 units away along the side of the block (see Fig. 6). Accounting for the time318

to reach each box, pick it up, move it, put it down, and return to a position adjacent319

to the next box to be moved, each iteration has a total cost of 2d + 3, except the last320

which does not require moving to the next box and so only costs d + 2. In total, moving321

ISAAC 2019

59:10 Online Algorithms for Warehouse Management

these boxes costs d(2d+ 3) + (d+ 2) = 2d2 + 4d+ 2. Next, we reverse the process at the322

same cost, replacing box bj with box bi and restoring boxes 1 through d to their original323

positions. This process is briefly interrupted to move box bj out of the way, adding a cost of324

2 (Fig. 6(h)). Thus, in total, swapping a new box with an interior box comes at a cost of325

2(2d2 + 4d+ 2) + 2 = 4d2 + 8d+ 6. J326

The depth of a box is bounded by the radius of the block in which it resides. Specifically,327

a box in ring ri has a depth d ≤ i−2
2 and so, along with Lemma 4, we have the following328

corollary:329

I Corollary 5. Retrieving a box from a block in ring ri has a cost of C(ri) ≤ i2 + 2.330

Combining this corollary and Lemma 3, the total cost to move to a box in ring ri, retrieve331

it, and return to the access point is at most332

(i2 + i) + (i2 + 2) + (i2 + i) = 3i2 + 2i+ 2 (1)333

Next, let us consider retrieval cost as a function of distance from the access point.334

I Lemma 6. If a box is at `1 distance δ from the access point then it lies in a ring ri, such335

that i ≤
√

3δ.336

Proof. To reach the highest ring level possible at a distance δ, travel orthogonally in a337

straight line, traversing each ring’s width in turn. As ring ri has width i, the farthest ring338

that can be reached is the first ring ri such that339

δ ≤
i∑

j=0
j = i2 + i

2
(2)340

Solving for i yields i ≥
√

2δ + 1
4 −

1
2 .341

It is easily seen that for all δ ≥ 1,
√

3δ ≥
√

2δ + 1
4 −

1
2 , thus i =

√
3δ suffices as an upper342

bound for the greatest ring index at a distance no more than δ. J343

By combining Eq. (1) and Lemma 6, we obtain the following.344

I Lemma 7. In the Nicomachus layout, retrieving a box at `1 distance δ from the access345

point is O(δ).346

Proof. Eq. (1) shows that retrieving a box in ring ri has a maximum total cost of 3i2 + 2i+ 2347

and Lemma 6 shows that a box at distance δ will be in some ring ri, where i ≤
√

3δ. So,348

retrieving a box at distance δ incurs at most a cost of 3(
√

3δ)2 + 2
√

3δ + 2 = 9δ + 2
√

3δ + 2,349

which is O(δ). J350

From this we find that trading the positions of two boxes can be done at a cost proportional351

to the sum of their `1 distances from the access point. A simple, naive algorithm could use352

the access point as an intermediary, accessing both boxes at cost O(δ), and returning them353

to their opposing rather than original positions. Thus, we have the following:354

I Corollary 8. If two boxes bi and bj are at `1 distances δi and δj from the access point,355

respectively, then the cost of swapping them is no more than c(δi + δj), for some constant c.356

P. Dasler and D. M. Mount 59:11

Given this corollary, we can now show that Block-LRUA is competitive in the sliding357

model. From the proof of Theorem 1 and the structure of Block-LRUA, it suffices to bound358

the cost of evictions from each of the containers. For any k ≥ 0, consider an eviction from359

container Ck to Ck+1. The contribution of this eviction to Wlru(S) is 2k. By Corollary 8,360

the cost of sliding one to the other is at most c(2k−1 + 2k) < 2c2k, implying that the sliding361

cost is within a constant factor of the eviction cost (roughly 4). From the proof of Theorem 1362

the eviction cost can be used as a proxy for its actual cost, and therefore the sliding cost is363

at most a constant factor more than the actual cost of Block-LRUA in the case of swapping364

motion. This implies that the cost of Block-LRUA in the sliding motion model is competitive365

with the optimum solution in the swapping motion model. The actual cost of the optimum366

algorithm in the sliding model cannot be lower than the actual cost of the optimum algorithm367

in the swapping model. With a roughly factor-4 cost ratio between the sliding and swapping368

models, the overall ratio is roughly 128. While this competitive ratio may be rather high, the369

analysis thus far has assumed worst case scenarios across multiple factors and the focus has370

been to prove the general competitiveness rather than finding the best competitive ratio. We371

are confident that an empirical experiment would likely show that the average case scenario372

has a much more favorable competitive ratio. Regardless, as a consequence of the above373

discussion, we have:374

I Theorem 9. For any instance of the attic problem and any sufficiently long access sequence375

S, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,376

assuming sliding motion.377

3 Online Solution to the Warehouse Problem378

In this section we present an online algorithm for the warehouse problem. As before, we will379

present the algorithm for swapping motion and then generalize to sliding motion. Recall380

that the warehouse problem differs from the attic problem in that there are multiple access381

points, all of which lie on the bottom side of the rectangular domain Ω, which we may assume382

lies on the x-axis. Our algorithm, which we call Block-LRUW , will be similar in spirit to383

online algorithms for hierarchical memory systems, but the combination of spatial locations384

and multiple access points adds considerable complexity. As with the attic problem, it will385

simplify matters to describe the algorithm first in an infinite context, where boxes may be386

placed anywhere above the x-axis, and then adjust the solution to the case of a rectangular387

domain. Our approach will be to define containers based on a quadtree-like structure above388

the x-axis, and to evict boxes up the quadtree from child to parent. We will treat each389

quadtree cell as if it were a cache in the memory hierarchy, with the least-recently used box390

evicted whenever more space is needed.391

3.1 Quadtree Model392

As mentioned above, our online solution to the warehouse problem employs a quadtree393

subdivision over the positive-y halfspace. The leaves of the quadtree, or level 0, consist of394

the unit squares whose lower left corners are the grid points on the x-axis, that is, (x, 0) for395

x ∈ Z. Level 1 consists of the 2× 2 squares lying immediately above whose lower left corners396

are located at (2x, 1) for x ∈ Z. In general, for k ≥ 0, level-k consists of the 2k × 2k squares397

whose lower left corners lie on (2kx, 2k − 1), for x ∈ Z. Each level-k node u has a parent398

p(u) of twice the side length lying immediately above on level k + 1 (see Fig. 7(a)), and two399

children each of half the side length lying immediately below on level k − 1. The set of unit400

ISAAC 2019

59:12 Online Algorithms for Warehouse Management

squares associated with each node of the quadtree is called its cell. This structure covers401

the infinite grid lying above the x-axis. Given a rectangular domain Ω whose lower side lies402

along the x-axis, we clip the above structure to this rectangle (see Fig. 7(b)).403

a1 a2 a3 a4 a5

u

p(u)

(a)

aj

(c)

bi

Quadtree model Processing a request

(b)

a1 a2 a3 a4 a5

Restriction to Ω

Figure 7 Quadtree layout.

To simplify the analysis of our solution, we first define a variant of the warehouse problem404

with an alternate cost function based on this quadtree structure, which we call the quadtree405

model. Of course, an optimal solution does not need to follow this model, and later, we will406

relate the cost of the standard solution to this variant. The processing of requests in this407

model differs from the standard model (described in Section 1.1) in that, after moving the408

box to the desired access point, the reorganization chain is allowed to move a box within its409

current quadtree cell, or it may move the box to the quadtree cell of an ancestor, but no410

other movements are allowed (see Fig. 7(c)).411

More formally, consider a request for a box b to access point a. Let Q0(a) denote the412

quadtree cell containing a, and let Q1(a), Q2(a), . . . denote the successive quadtree ancestor413

cells of Q0(a). If a is unoccupied, we simply move the box there. Otherwise, in order to make414

space for bi, we perform a chain of swaps along some locations p0, p1, . . . , pk such that p0 = a,415

pk is either unoccupied (possibly the former location of b), and if pi ∈ Qj(a), then pi+1 is416

the same cell or an ancestor, that is, pi+1 ∈ Qj′(a) for j′ ≥ j. As described in Section 1.1,417

we perform swaps (in reverse order) along the resulting chain. Each swap that moves a box418

out of its current quadtree cell is called eviction.419

Costs are defined as follows in this model. A box may be moved within its quadtree cell420

free of charge, but when it is moved to an ancestor cell, it is charged 2k, where k is the level421

of the quadtree cell into which the box is moved. (The analogy with hierarchical memory422

systems should be evident, where we think of each quadtree cell as a cache, and eviction to423

an ancestor is analogous to moving a page to a larger cache in slower memory.)424

3.2 Online Algorithm for Swapping Motion425

Let us now present our algorithm for the warehouse problem, which we call Block-LRUW .426

Consider a request (b, a) to bring box b to access point a. If this access point is unoccupied,427

we simply move the box there. Otherwise, in order to make space for b, we will perform a428

sequence of evictions from Q0(a), Q1(a), and so on until we encounter the first quadtree429

ancestor Qk(a) that has at least one unoccupied location (possibly b’s location at the time of430

the request). More formally, let pb denote b’s location, let p0 = a denote the access point,431

and let p1, . . . , pk−1 denote the locations of the least-recently used boxes of quadtree cells432

Q0(a) through Qk−1(a), respectively. Finally, let pk ∈ Qk(a) denote the final unoccupied433

P. Dasler and D. M. Mount 59:13

location (or former location of b). As described in Section 1.1, we perform swaps (in reverse434

order) along the chain 〈pb, p0, . . . , pk〉. The main result of this section is showing that this435

algorithm is competitive.436

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access437

sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal438

solution, assuming swapping motion.439

Due to space limitations, the full proof and competitive analysis appear in Appendix A.2.440

It is a nontrivial extension of the single-container structure from the attic problem to a441

hierarchical container structure based on the quadtree, and showing how a general solution442

in the standard model can be transformed competitively into the quadtree model.443

3.3 Online Algorithm for Sliding Motion444

In this section, we show that the competitiveness of Block-LRUW in the case of swapping445

motion can be used to prove that the sliding version of the same algorithm is competitive.446

As in the attic problem, our approach will be to describe a layout of boxes that is amenable447

to efficient sliding motion.448

We make use of a Nicomachus-like box layout. Rather than rings centered about the449

access point, we flatten these rings into layers stacked above the x-axis. As before, we begin450

with a layer of 1× 1 cell regions. Above this is a row of 2× 2 regions, then 3× 3, and so on,451

with each i× i region containing a block of (i− 1)× (i− 1) boxes (see Fig. 8). We call this452

the flattened Nicomachus layout.453

δ

yi yjx

Figure 8 A flattened version of the Nicomachus layout for the warehouse problem, with a
conceptual example of swapping two boxes. Pathfinding is ignored in this illustration, but accounted
for in the supporting lemma.

Once again, we make use of a simple naive algorithm that can efficiently trade the454

positions of two boxes in the sliding model. More formally, we prove the following:455

I Lemma 11. If two boxes bi and bj are at `1 distances δ from each other and at vertical456

distances yi and yj from the x-axis, respectively, then the cost of swapping them in the457

flattened Nicomachus layout is no more than c(δ + yi + yj), for some constant c.458

Proof. A naive algorithm can swap the two boxes bi and bj by: (1) bringing them to the459

x-axis, (2) swapping their positions along the x-axis, and (3) returning them to their new460

vertical positions. Notice that the cost of retrieving/replacing a box and bringing it to the461

x-axis is equivalent to the retrieval cost of a box positioned directly above the access point in462

the Attic Problem with Sliding Motion. As per Lemma 7, this access cost in both contexts is463

ISAAC 2019

59:14 Online Algorithms for Warehouse Management

O(y), where y is the distance to the x-axis or singular access point, respectively. Given this,464

both steps (1) and (3) of the algorithm occur at a constant factor of (yi + yj). Clearly the465

horizontal distance traveled along the x-axis x ≤ δ, therefore, the total cost of swapping the466

two boxes must be no greater than c(δ + yi + yj), for some constant c. J467

We can use this lemma to related the cost of swapping two elements in the swapping and468

sliding models. The following summarizes our main result.469

I Theorem 12. For any instance of the warehouse problem and any sufficiently long access470

sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal471

solution, assuming sliding motion.472

Proof. From Theorem 10 and the structure of Block-LRUW , it suffices to bound the cost473

of evictions from one quadtree node to its parent. Assuming that the node is at quadtree474

level k − 1, and its parent is at level k, this swap incurs a cost of 2k in the quadtree475

model. Letting y1 and y2 denote the vertical distances of these locations from the x-476

axis, we have y1 ≤ 2k and y2 ≤ 2k+1. Also, they are separated from each other by an477

`1 distance of δ ≤ 2k+2. By Lemma 11, the cost of sliding one to the other is at most478

c(δ + yi + yj) ≤ c(2k+2 + 2k + 2k+1) = 7c2k, implying that sliding cost is within a constant479

factor of the quadtree cost. From the proof of Theorem 10 and the structure of Block-LRUW ,480

the quadtree cost of Block-LRUW can be used as a proxy for its actual cost, and therefore the481

sliding cost is at most a constant factor more than the actual cost of Block-LRUW assuming482

swapping motion. This implies that the cost of Block-LRUW in the sliding motion model483

is competitive with the optimum solution in the swapping motion model. The actual cost484

of the optimum algorithm in the sliding model cannot be lower than the actual cost of the485

optimum algorithm in the swapping model. With a roughly factor-7 cost ratio between the486

sliding and swapping models, the overall ratio is roughly 112. As before, this is based on487

many worst-case assumptions and can likely be improved upon. J488

4 Concluding Remarks489

In this paper we have presented a model for an automated warehouse management system490

containing a set of standardized portable storage units or boxes, a robot that moves these491

boxes around the warehouse in one of two ways (swapping or sliding), and a set of access492

points where requested boxes must be delivered. We then presented online algorithms for493

two natural instances of the warehouse problem, one involving a single access point within a494

rectangular domain and the other involving a sequence of access points along the bottom495

side of a rectangular domain. We prove that our algorithms are competitive with respect to496

an optimal (offline) algorithm with full knowledge of the access sequence. Our competitive497

ratios are relatively high, and we suspect that they are far from tight, but tightening these498

bounds will involve either significantly more complex algorithms or better lower bounds.499

We leave for future work some interesting open problems. Recall that our model assumes500

that access requests are processed sequentially. This simplifying assumption allowed us to501

ignore the extremely difficult issue of motion coordination, which arises when multiple robots502

are present [11, 10, 18]. Clearly, any realistic solution should consider an environment with503

multiple robots where requests are processed concurrently. Because we control the layout504

of boxes in the domain, it may be possible insert additional slack space into the layout to505

facilitate efficient motion coordination. Another interesting question in this vein is how to506

handle the insertion/deletion of boxes from the collection. Perhaps we could further leverage507

P. Dasler and D. M. Mount 59:15

memory management schemes such as [9], which efficiently handle the reallocation of 2D508

memory.509

Also, how does the competitiveness of our schemes change, if at all, when the model510

becomes less uniform. In our current model, all actions taken by the robot are of unit cost,511

regardless of factors like whether or not the robot is laden or what sort of path a robot512

takes to retrieve a box. Çelik and Süral [4], for example, show that the number of turns a513

robot makes in a parallel-aisle warehouse can have a significant impact on retrieval efficiency.514

Fekete and Hoffmann [8] look at the online problem of packing differently sized squares into515

a dynamically sized square container, and applying this work to a warehouse which does516

not use standardized containers would be a natural continuation of the work presented here.517

Further generalizing our model to account for differing action costs and box dimensions518

would increase its real-world applicability and may lead to some interesting insights.519

References520

1 A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical memory. In Proc.521

19th Annu. ACM Sympos. Theory Comput., STOC ’87, pages 305–314, New York, NY, 1987.522

ACM. URL: http://doi.acm.org/10.1145/28395.28428, doi:10.1145/28395.28428.523

2 F. Amato, F. Basile, C. Carbone, and P. Chiacchio. An approach to control auto-524

mated warehouse systems. Control Eng. Pract., 13(10):1223–1241, October 2005. URL:525

http://www.sciencedirect.com/science/article/pii/S0967066104002345, doi:10.1016/526

j.conengprac.2004.10.017.527

3 A. S. Cahn. The summer meeting in Madison. Bull. Amer. Math. Soc., 54(11):1073, November528

1948. URL: http://www.ams.org/journal-getitem?pii=S0002-9904-1948-09093-0, doi:529

10.1090/S0002-9904-1948-09093-0.530

4 M. Çelik and H. Süral. Order picking in a parallel-aisle warehouse with turn531

penalties. Internat. J. Production Res., 54(14):4340–4355, July 2016. URL:532

http://www-tandfonline-com.proxy-um.researchport.umd.edu/doi/abs/10.1080/533

00207543.2016.1154624, doi:10.1080/00207543.2016.1154624.534

5 F.-L. Chang, Z.-X. Liu, Z. Xin, and D.-D. Liu. Research on order picking optimization problem535

of automated warehouse. Sys. Eng. - Theory & Pract., 27(2):139–143, February 2007. URL:536

http://www.sciencedirect.com/science/article/pii/S1874865108600150, doi:10.1016/537

S1874-8651(08)60015-0.538

6 A. Charnes and W. W. Cooper. Generalizations of the warehousing model. OR: Oper.539

Research Quarterly, 6(4):131–172, 1955. URL: http://www.jstor.org/stable/3006550, doi:540

10.2307/3006550.541

7 J.-F. Cordeau and G. Laporte. The dial-a-ride problem: Models and algorithms. Ann.542

Oper. Res., 153(1):29–46, 2007. URL: https://link.springer.com/article/10.1007/543

s10479-007-0170-8, doi:10.1007/s10479-007-0170-8.544

8 S. P. Fekete and H.-F. Hoffmann. Online square-into-square packing. Algorithmica, 77(3):867–545

901, 2017. URL: https://link.springer.com/article/10.1007%2Fs00453-016-0114-2,546

doi:https://doi.org/10.1007/s00453-016-0114-2.547

9 S. P. Fekete., J.-M. Reinhardt, and C. Scheffer. An efficient data structure for dynamic548

two-dimensional reconfiguration. J. Syst. Archit., 75(C):15–25, April 2017. URL: https:549

//doi.org/10.1016/j.sysarc.2017.02.004, doi:10.1016/j.sysarc.2017.02.004.550

10 R. A. Hearn and E. D. Demaine. PSPACE-completeness of sliding-block puzzles and other551

problems through the nondeterministic constraint logic model of computation. Theo. Comp.552

Sci., 343(1-2):72–96, 2005. URL: https://www.sciencedirect.com/science/article/pii/553

S0304397505003105, doi:https://doi.org/10.1016/j.tcs.2005.05.008.554

11 J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion planning for555

multiple independent objects: PSPACE-hardness of the “warehouseman’s problem”. Internat.556

ISAAC 2019

http://doi.acm.org/10.1145/28395.28428
http://dx.doi.org/10.1145/28395.28428
http://www.sciencedirect.com/science/article/pii/S0967066104002345
http://dx.doi.org/10.1016/j.conengprac.2004.10.017
http://dx.doi.org/10.1016/j.conengprac.2004.10.017
http://dx.doi.org/10.1016/j.conengprac.2004.10.017
http://www.ams.org/journal-getitem?pii=S0002-9904-1948-09093-0
http://dx.doi.org/10.1090/S0002-9904-1948-09093-0
http://dx.doi.org/10.1090/S0002-9904-1948-09093-0
http://dx.doi.org/10.1090/S0002-9904-1948-09093-0
http://www-tandfonline-com.proxy-um.researchport.umd.edu/doi/abs/10.1080/00207543.2016.1154624
http://www-tandfonline-com.proxy-um.researchport.umd.edu/doi/abs/10.1080/00207543.2016.1154624
http://www-tandfonline-com.proxy-um.researchport.umd.edu/doi/abs/10.1080/00207543.2016.1154624
http://dx.doi.org/10.1080/00207543.2016.1154624
http://www.sciencedirect.com/science/article/pii/S1874865108600150
http://dx.doi.org/10.1016/S1874-8651(08)60015-0
http://dx.doi.org/10.1016/S1874-8651(08)60015-0
http://dx.doi.org/10.1016/S1874-8651(08)60015-0
http://www.jstor.org/stable/3006550
http://dx.doi.org/10.2307/3006550
http://dx.doi.org/10.2307/3006550
http://dx.doi.org/10.2307/3006550
https://link.springer.com/article/10.1007/s10479-007-0170-8
https://link.springer.com/article/10.1007/s10479-007-0170-8
https://link.springer.com/article/10.1007/s10479-007-0170-8
http://dx.doi.org/10.1007/s10479-007-0170-8
https://link.springer.com/article/10.1007%2Fs00453-016-0114-2
http://dx.doi.org/https://doi.org/10.1007/s00453-016-0114-2
https://doi.org/10.1016/j.sysarc.2017.02.004
https://doi.org/10.1016/j.sysarc.2017.02.004
https://doi.org/10.1016/j.sysarc.2017.02.004
http://dx.doi.org/10.1016/j.sysarc.2017.02.004
https://www.sciencedirect.com/science/article/pii/S0304397505003105
https://www.sciencedirect.com/science/article/pii/S0304397505003105
https://www.sciencedirect.com/science/article/pii/S0304397505003105
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2005.05.008

59:16 Online Algorithms for Warehouse Management

J. Robotics Res., 3(4):76–88, 1984. URL: https://doi.org/10.1177/027836498400300405,557

doi:10.1177/027836498400300405.558

12 D. Jain. Adoption of next generation robotics: A case study on Amazon. Perspectiva: A Case559

Research Journal, III:15, 2017.560

13 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009. URL:561

http://www.sciencedirect.com/science/article/pii/S1574013709000197, doi:10.1016/562

j.cosrev.2009.04.002.563

14 C. K. M. Lee. Development of an industrial internet of things (IIoT) based smart robotic564

warehouse management system. In CONF-IRM 2018 Proceedings, page 14, 2018.565

15 R. B. Nelsen. Proofs without words: Exercises in visual thinking. Number no. 1 in Classroom566

resource materials. The Mathematical Association of America, Washington, D.C, 1993.567

16 K.-W. Pang and H.-L. Chang. Data mining-based algorithm for storage location assignment in a568

randomised warehouse. Internat. J. Production Res., 55(14):4035–4052, July 2017. URL: https:569

//doi.org/10.1080/00207543.2016.1244615, doi:10.1080/00207543.2016.1244615.570

17 M. Sarrafzadeh and S. R. Maddila. Discrete warehouse problem. Theo. Comp. Sci., 140(2):231–571

247, April 1995. URL: http://linkinghub.elsevier.com/retrieve/pii/030439759400192L,572

doi:10.1016/0304-3975(94)00192-L.573

18 R. Sharma and Y. Aloimonos. Coordinated motion planning: The warehouseman’s problem574

with constraints on free space. IEEE Transactions on Systems, Man, and Cybernetics,575

22(1):130–141, February 1992. URL: http://ieeexplore.ieee.org/document/141317/, doi:576

10.1109/21.141317.577

19 D. D. Sleator and R. E. Tarjan. Amorized eficiency of list update and paging rules. Commun.578

ACM, 28(2):202–208, February 1985. URL: https://dl.acm.org/citation.cfm?id=2793,579

doi:10.1145/2786.2793.580

20 L. Wolsey and H. Yaman. Convex hull results for the warehouse problem. Disc. Opti-581

mization, 30:108–120, 2018. URL: http://www.sciencedirect.com/science/article/pii/582

S1572528617301482, doi:https://doi.org/10.1016/j.disopt.2018.06.002.583

A Full Proofs584

A.1 Competitiveness of Block-LRUA (Attic Problem) with Swapping585

I Theorem 1. For any instance of the attic problem and any sufficiently long access sequence586

R, the cost of Block-LRUA(S) is within a constant factor of the cost of an optimal solution,587

assuming swapping motion.588

Proof. Consider an input S consisting of the initial box placement and a sequence of access589

requests. Let Topt(S) and Tlru(S) denote the total cost of the optimum and Block-LRUA590

solutions, respectively, on this input. We will show that there exists a constant c and591

quantity f(S) that does not grow with the length of the access sequence, such that Tlru(S) ≤592

cTopt(S) + f(S). Since f(S) does not grow with the length of the access sequence, for all593

sufficiently long access sequences its impact on the total cost will be negligible compared to594

Topt(S).595

Our analysis will be based on an auxiliary statistic. Given any container Ck, define an596

eviction to be an event in which a box lying within this container is moved to a location597

in an enclosing container Ck′ , for k′ > k. For the given access request sequence S, define598

Elru(S, k) to be the total number of evictions from container Ck performed by Block-LRUA.599

Let Wlru(S) =
∑

k≥0 2kElru(S, k) denote the weighted cost of these evictions. We will show600

that there exist constants c1 and c2 and quantities f1(S) and f2(S) that do not grow with601

the length of the access sequence, such that the following two inequalities hold:602

(1) Tlru(S) ≤ c1Wlru(S) + f1(S) and (2) Wlru(S) ≤ c2Topt(S) + f2(S).603

https://doi.org/10.1177/027836498400300405
http://dx.doi.org/10.1177/027836498400300405
http://www.sciencedirect.com/science/article/pii/S1574013709000197
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
https://doi.org/10.1080/00207543.2016.1244615
https://doi.org/10.1080/00207543.2016.1244615
https://doi.org/10.1080/00207543.2016.1244615
http://dx.doi.org/10.1080/00207543.2016.1244615
http://linkinghub.elsevier.com/retrieve/pii/030439759400192L
http://dx.doi.org/10.1016/0304-3975(94)00192-L
http://ieeexplore.ieee.org/document/141317/
http://dx.doi.org/10.1109/21.141317
http://dx.doi.org/10.1109/21.141317
http://dx.doi.org/10.1109/21.141317
https://dl.acm.org/citation.cfm?id=2793
http://dx.doi.org/10.1145/2786.2793
http://www.sciencedirect.com/science/article/pii/S1572528617301482
http://www.sciencedirect.com/science/article/pii/S1572528617301482
http://www.sciencedirect.com/science/article/pii/S1572528617301482
http://dx.doi.org/https://doi.org/10.1016/j.disopt.2018.06.002

P. Dasler and D. M. Mount 59:17

We first prove inequality (1). Observe that the cost of processing a request involving a604

box b in Block-LRUA consists of two parts, the cost of moving b to the access point (that is,605

the `1 distance of b to access point) plus the cost of performing the evictions caused by this606

move. We assert that it suffices to bound only the latter quantity. To see why, consider two607

consecutive requests to b. Just after the first request, b is located at the access point. When608

the second request occurs, if b is not at the access point, it has been moved away due to609

various evictions involving b that have occurred due to intervening access requests. By the610

triangle inequality, the sum of the costs of these evictions involving b is at least as large as611

the `1 distance of b from the access point at the time of the second request. Thus, the cost612

of moving b to the access point for the second request is not greater than cost of evictions613

involving b due to intervening requests. This allows us to account for all the requests for b614

except the first. Define f1(S) to be the sum of the `1 of every box’s initial location to the615

access point. Clearly, f1(S) depends only on the initial box placements.616

It remains to bound the cost needed to process the evictions. Each time Block-LRUA evicts617

a box from some container Ck to the enclosing container Ck+1, the cost is bounded above by618

the maximum distance between any point of Ck to any point in Ck+1. Clearly, this is not619

greater than the diameter of Ck+1, which is 2k+2. Summing over all accesses and all containers,620

it follows that the total cost of Block-LRUA evictions is at most
∑

k≥0 2k+2Elru(S, k) =621

4Wlru(S). By our earlier observation that the cost of bringing boxes back to the access622

point is bounded above by the sum of f1(S) and the total eviction cost, it follows that623

Tlru(S) ≤ c1Wlru(S) + f1(S), where c1 = 2 · 4 = 8, thus establishing (1).624

To prove inequality (2), we will apply a technique similar to one given by Sleator and625

Tarjan [19] and Aggarwal et al. [1] for hierarchical memory systems. For any k ≥ 0, define626

Ck =
⋃

j≤k Cj (that is, the set of points within distance 2k of the origin). Also define627

mk = |Ck| and mk = |Ck| denote the total capacities of these sets. For each k ≥ 2, we will628

relate the weighted eviction cost of Block-LRUA on container Ck with respect to the cost629

of box movements by the optimal solution within container Ck. The overall analysis comes630

about by summing over all container levels.631

Fix any k ≥ 2. Partition the access request sequence into contiguous segments, such632

that within any segment (except possibly the last), Block-LRUA performs mk evictions from633

container Ck. (The last segment will not be analyzed, but since there is only one such634

segment for each k from which an eviction was performed, it follows that for all sufficiently635

long access segments, the impact on the overall cost of these segments be negligible. See636

[19] for more details.) Consider any complete segment. The contribution of the evictions of637

this segment from Ck to the weighted eviction cost Wlru(S) is 2kmk. In Block-LRUA every638

container Cj for j ≤ k evicts the least recently accessed box, and this implies that any box639

evicted from container Ck is the least recently accessed box not only from Ck, but from Ck640

as well. We assert that during this segment, the number of distinct boxes accessed must be641

at least mk. To see why, observe that either all of the boxes evicted during this segment642

are distinct, or some box was evicted twice during the sequence. If there are mk distinct643

evictions, then there are at least least mk distinct boxes requested. On the other hand, if a644

box is evicted twice, then by the nature of Block-LRUA, between these two evictions, every645

one of the mk boxes in Ck must have been accessed in order for this box to transition from646

the most recent to the least recent.647

Now, let us consider how the optimum algorithm deals with the mk distinct box requests648

that have occurred during this segment. Intuitively, because of the exponential increase in649

container sizes, most of the mk distinct accessed boxes cannot fit within Ck−1, and hence650

they must spill out into the surrounding region. We will charge for the work needed for the651

ISAAC 2019

59:18 Online Algorithms for Warehouse Management

spillover but limited to Ck (to avoid double counting).652

It will simplify matters to ignore boundary issues for now and consider the unbounded653

case where Ω = Z2. Define Ĉk to be the set of points of the infinite grid that lie within654

`1 distance (3/4)2k of the access point. Since k ≥ 2, we have Ck−1 ⊂ Ĉk ⊂ Ck. Let655

m̂k = |Ĉk|. We have m̂k ≤ c′mk, where c′ ≈ (3/4)2 ≤ 2/3. Thus, a fraction of 1 − c′ or656

roughly one-third of the mk distinct boxes accessed during this sequence must spill out from657

Ck−1 to an `1 distance of at least (3/4)2k − 2k−1 = (1/2)2k−1 = 2k−2 beyond Ck−1’s outer658

boundary. It follows that the contribution of to the cost of Topt(S) of these boxes is at least659

(mk/3)2k−2 = 2kmk/12. Because all of these box motions are contained within Ck, there is660

no double counting of this cost between containers.661

The generalization to the case of a bounded rectangular domain Ω is straightforward but662

tedious. The key difference is that, due to the bounded nature of Ω, the sizes of consecutive663

containers may grow only linearly, not quadratically with the `1 radius of the container.664

(This happens, for example, if the domain is a long, thin strip.) Further, the size of the last665

container may even be smaller than its predecessor as we approach the outer edges of the666

domain. However, the key is that, since the radius value grows exponentially, consecutive667

container sizes differ by a constant factor for all but a constant number containers, and this668

is all that the above analysis requires.669

Let sk denote the number of complete segments for level k. Summing all the segments670

and all the levels of the hierarchy, we obtain671

Topt(S) ≥
∑
k≥2

sk2k−2mk.672

Adding in a term f2(S) to account for the final (incomplete) segments, noting that m0 and673

m1 are both constants, and combining with our earlier bound on Wlru(S), we obtain the674

following, for a suitable constant c3.675

Wlru(S) ≤
∑
k≥0

sk2kmk + f2(S) = s0m0 + s12m1 +
∑
k≥2

sk2kmk + f2(S)676

≤ c3(s0 + s1) + 4Topt(S) + f2(S).677
678

The term c3(s0 + s1) is just a constant times the total number of access requests and is679

not dominant. It follows that there is a constant c2 such that Wlru(S) ≤ c2Topt(S) + f2(S),680

which establishes inequality (2). Note that f2(S) does not grow with the length of the access681

sequence.682

Finally, by combining inequalities (1) and (2), we obtain683

Tlru(S) ≤ c1Wlru(S) + f1(S) ≤ c1(c2Topt(S) + f2(S)) + f1(S)684

≤ c1c2Topt(S) + (c1f2(S) + f1(S)) ≤ cTopt(S) + f(S),685
686

for some constant c ≥ c1c2 ≥ 32 and quantity f(S) that does not grow with the length of the687

access sequence. For all sufficiently long access sequences, this final term will be negligible.688

This completes the proof. J689

A.2 Competitiveness of Block-LRUW (Warehouse) with Swapping690

I Theorem 10. For any instance of the warehouse problem and any sufficiently long access691

sequence S, the cost of Block-LRUW (S) is within a constant factor of the cost of an optimal692

solution, assuming swapping motion.693

P. Dasler and D. M. Mount 59:19

Observe that Block-LRUW satisfies the requirements in quadtree model. For the sake694

of the above theorem, its cost is computed in the standard manner, as the sum of the `1695

distances of all swaps performed. Later, we will show that this is proportional to its cost in696

the quadtree model.697

The remainder of this section is devoted to proving this theorem. First, let us consider698

how we can simulate the behavior of a general solution to the warehouse problem in the699

quadtree model. Rather than focusing on individual access requests, we will do this on a700

box-by-box basis. Consider input sequence S and any box b. Let S′ denote a contiguous701

segment of S, which starts and ends at two consecutive access requests involving b. Let us702

denote these access points by a1 and a2, respectively. (For the segment prior to b’s first703

access, set a1 the closest access point to b’s initial location, and for the segment following b’s704

last access, a2 can be set arbitrarily to any access point.)705

When the standard solution completes the processing of the first access request, b will706

reside at a1. As a result of subsequent access requests in S′, b may be moved to new locations707

in the domain as a result of swap operations. Let 〈p0, . . . , pk〉 denote the sequence of locations708

through which b moves during S′, so that p0 = a1, and pk is the location of b just prior to709

the upcoming access request at a2. Since this is in the standard model, the points of this710

sequence are arbitrary. To perform the simulation, we will define a function π that maps the711

location of b at any time to the cell of some quadtree ancestor of a1 in a manner such that,712

under this function, b will move in accordance with the quadtree model. We present this713

mapping in the next section.714

A.2.1 Container Structure for the Warehouse Problem715

Before giving the details of the aforementioned mapping, let us start with an intuitive716

explanation. For each access point a let Qk(a) denote the quadtree cell associated with717

a’s ancestor at level k. We define a collection of nested regions of exponentially increasing718

sizes called containers surrounding a, denoted C0(a) ⊂ C1(a) ⊂ · · · (see Fig. 9(a)). (Note719

that, unlike the containers of Section 2.1, which were pairwise disjoint, here each container720

includes all the squares of its predecessors.)721

a

(a)

a

(b)

Containers

C2(a)
Q3(a)

Q2(a)

Q4(a)

C1(a)

C0(a)

π2

π1

π0

Figure 9 Intuitive structure of containers for the warehouse quadtree model.

For each container Ck(a) we will define a 1–1 function πk that maps each of point in722

Ck(A) to a point within the cell of some quadtree ancestor of a. (For example, in Fig. 9(a),723

πk maps boxes from Ck(a) to Qk+2(a).) In order to simulate the movement of a box that724

has been accessed most recently by a, we will track its movement through these containers.725

On first entering a container Ck(a) at some point p, we map the box to the associated point726

ISAAC 2019

59:20 Online Algorithms for Warehouse Management

πk(p) in the quadtree cell. When the box moves to a new point p′ within the same container,727

we move the box to πk(p′). Observe that because the containers are nested, even if the box728

moves into a location in a smaller container, it will still be considered as lying within Ck729

and so will remain in the same quadtree cell in the simulation. Recall that in the quadtree730

model, movements within the same quadtree cell are free of charge, and hence there is no731

need to account for movements within a given container. Whenever the box is first moved732

into a new larger container Ck′ , it will be charged the eviction cost of 2k′′ , where Qk′′(a) is733

the associated quadtree cell.734

Let us now define the containers and the associated functions more formally. One735

complication that arises is that the functions πk associated with two nearby access points736

may map locations to the same quadtree cell. When this happens, we must guarantee that737

two distinct locations in their containers are not mapped to the same location in this quadtree738

cell. To handle this, we will design our container structure carefully so that access points739

that map to the same quadtree cell will share the same container and the same mapping740

function.741

To make this precise, consider any access point a and any quadtree ancestor of a at level742

k. The function πk for a will map points from a’s container Ck(a) to Qk+2(a). This implies743

that the four grandchildren of Qk+2(a) at level k will do the same. So, we will give them all744

a common container and a common function. (In Fig. 10(a), the container C2(a) is shared745

by four 4× 4 quadtree cells drawn in heavy black lines.) The associated container is defined746

as follows. First, imagine a square grid of side length 2k covering the plane that is aligned747

with the quadtree cells. The container consists of the 16 grid cells that are `1 neighbors748

of the four grandchildren. (In Fig. 10(a), this container C2(a) is shaded in dark gray and749

includes the squares of C0(a) and C1(a). Note that the lowest tier of these grid squares falls750

one unit below the x-axis, but we simply ignore these nonexistent squares in our mapping.)751

The number of squares is at most 16 · 2k = 2k+2, and so there is sufficient space to map752

the squares of the container into Qk+2(a) (see Fig. 10(b)). We define πk for this container753

to be any such function. (We do not require that this function preserve distances because,754

according to the quadtree model, movements within a quadtree cell are free.)755

A.2.2 Proving Competitiveness756

In this section, we present a proof of Theorem 10. Given a access sequence S, define Topt(S),757

Tlru(S) to be the (standard) costs for Opt and Block-LRUW , respectively. Define Wlru(S) to758

be the cost of Block-LRUW in the quadtree cost model, and define Wopt(S) to be the cost of759

the quadtree-simulated version of Opt in the quadtree cost model.760

The analysis follows a similar structure to the one given in Theorem 1, and so we will761

focus on just the major differences. The analysis is based on three inequalities, where c1, c2,762

and c3 are constants and f2(S) and f3(S) are quantities that do not grow with the length of763

the access sequence:764

(1)Tlru(S) ≤ c1Wlru(S) (2)Wlru(S) ≤ c2Wopt(S)+f2(S) (3)Wopt(S) ≤ c3Topt(S)+f3(S)765

Tlru(S) ≤ c1Wlru(S): Block-LRUW is running in the quadtree model, but it uses the766

standard (`1) costs, not the eviction costs. Also, it evicts from child to parent, never767

skipping ancestors. When moving a box from quadtree cell Qk−1 to Qk the actual cost is768

at most the worst-case `1 distance between these cells, which is at most 2 · 2k = 2k+1,769

and the quadtree model assesses a charge of 2k. Thus, setting c1 = 2 yields the desired770

bound.771

P. Dasler and D. M. Mount 59:21

Q4(a)

Q3(a)

Q2(a)

C2(a)

C1(a)C0(a)

(a) (b)

a a

π2

π1

π0

Figure 10 Actual structure of containers for the warehouse quadtree model.

Wlru(S) ≤ c2Wopt(S) + f2(S): Let mk = 22k denote the number of boxes in a quadtree772

cell Qk at level k. Let mk the sum of mj for a quadtree cell and all its descendants (which773

is roughly 2mk). Let us focus on a single quadtree cell at level k, call it Qk. Consider774

the two child cells at level k − 1, Q′k−1 and Q′′k−1. Let A′ and A′′ denote the subsets of775

access points descended from these two quadtree nodes, respectively. Now, break up the776

access sequence into contiguous segments, such that Qk witnesses mk evictions in the777

running of Block-LRUW . Let us consider a single segment S′. Observe that, with respect778

to access points A′ ∪A′′, Block-LRUW is effectively running an LRU algorithm on the779

union of Qk and the cells of all its children. (To see why, observe that the least-recently780

used boxes of each descendent are evicted to their parents and eventually up to to Qk,781

and the least-recently used box within Qk is evicted.)782

We assert that over segment S′, at least mk distinct box accesses have been processed by783

the access points A′ ∪A′′ combined. Now, let us consider how Wopt(S) handles the same784

requests, but from the perspective of Q′k−1 and Q′′k−1. These two together (and their785

descendant cells) have a total capacity of mk−1 +mk−1 ≈ mk/2. Thus, the remaining786

roughly mk/2 boxes must be evicted from these children by Opt. They may be evicted787

up one level to Qk or up multiple levels. For the sake of simplicity, let us consider the788

case where they are evicted up just one level to Qk. (The other case involves splitting the789

charge among the nodes along the path according to a geometric series.) Each evicted790

box is assessed a charge of 2k, for a total of roughly 2kmk/2 = 2k−1mk. Therefore,791

the total charge assessed to Wopt(S) during this segment is at least 2k−1mk, while the792

total charge assessed to Qk in Wlru(S) is 2k+1mk. Summing over all the levels (and793

letting f2(S) account for the charges in the partial segment at the end of S) we have794

Wlru(S) ≤ c2Wopt(S) + f2(S), where c2 is roughly 4.795

Wopt(S) ≤ c3Topt(S) + f3(S): We focus on the activity involving a single box b between796

two consecutive accesses to a and a′, say. (The additional f3(S) term handles the cost797

prior to the initial request for b and after the final request.) Observe that Wopt(S) does798

ISAAC 2019

59:22 Online Algorithms for Warehouse Management

not charge for movements within a quadtree cell, and (since we are in the quadtree model)799

it never demotes a box to a lower level of the quadtree. It charges an eviction cost of800

2k whenever the box enters a quadtree cell at level k. This event corresponds to an801

event in standard Opt when this box enters Ck(a) \ Ck−1(a) for the first time. Let k∗802

denote the highest container index into which Opt moves this box (formally, the highest803

k such that the box enters Ck(a) \ Ck−1(a)). Since this box might be evicted into all804

the containers from level 1 up to k∗, this box contributes at most
∑k∗

k=1 2k ≤ 2k∗+1 to805

Wopt(S). On the other hand, Opt has to move this box from the access point to some806

point in Ck∗(a) \ Ck∗−1(a). It is easy to see that this involves a distance of at least807

2k∗ + 1. It follows that this box contributes more than 2k∗ to Topt(S) and at most 2k∗+1
808

to Wopt(S). Therefore, setting c3 = 2 yields the desired result.809

Together, the three inequalities imply that810

Tlru(S) ≤ c1Wlru(S) ≤ c1(c2Wopt(S) + f2(S))811

≤ c1(c2(c3Topt(S) + f3(S)) + f2(S)) ≤ cTopt(S) + f(S),812
813

where c = c1c2c3 = 16 and f(S) = c1c2f3(S) + c1f2(S). This completes the proof of814

Theorem 10.815

	Introduction
	Model and Results
	Prior Work

	Online Solution to the Attic Problem
	Hierarchical Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion
	The Nicomachus Layout
	Accessing a Box

	Online Solution to the Warehouse Problem
	Quadtree Model
	Online Algorithm for Swapping Motion
	Online Algorithm for Sliding Motion

	Concluding Remarks
	Full Proofs
	Competitiveness of Block-LRUA (Attic Problem) with Swapping
	Competitiveness of Block-LRUW (Warehouse) with Swapping
	Container Structure for the Warehouse Problem
	Proving Competitiveness

