
Modular Circulation and Applications to Traffic
Management�

Philip Dasler and David M. Mount

Department of Computer Science and
Institute for Advanced Computer Studies

University of Maryland, College Park, Maryland 20742
{daslerpc,mount}@cs.umd.edu

Abstract. We introduce a variant of the well-known minimum-cost cir-
culation problem in directed networks, where vertex demand values are
taken from the integers modulo λ, for some integer λ ≥ 2. More formally,
given a directed network G = (V,E), each of whose edges is associated
with a weight and each of whose vertices is associated with a demand
taken over the integers modulo λ, the objective is to compute a flow of
minimum weight that satisfies all the vertex demands modulo λ. This
problem is motivated by a problem of computing a periodic schedule for
traffic lights in an urban transportation network that minimizes the total
delay time of vehicles. We show that this modular circulation problem is
solvable in polynomial time when λ = 2 and that the problem is NP-hard
when λ = 3. We also present a polynomial time algorithm that achieves
a 4(λ− 1)-approximation.

Keywords: Network flows and circulations, Traffic management, Ap-
proximation algorithms, NP-hard problems

1 Introduction

Minimum (and maximum) cost network flows and the related concept of circula-
tions are fundamental computational problems in discrete optimization. In this
paper, we introduce a variant of the circulation problem, where vertex demand
values are taken from the integers modulo λ, for some integer λ ≥ 2. For ex-
ample, if λ = 10 a vertex with demand 6 can be satisfied by any net incoming
flow of 6, 16, 26 and so on or a net outgoing flow of 4, 14, 24, and so on. Our
motivation in studying this problem stems from an application in synchronizing
the traffic lights of an urban transportation system.

Throughout, let G = (V,E) denote a directed graph, and let λ ≥ 2 be an
integer. Each edge (u, v) ∈ E is associated with a nonnegative integer weight,
wt(u, v), and each vertex u ∈ V is associated with a demand, d(u), which is an
integer drawn from Zλ, the integers modulo λ. Let f be an assignment of values

� Research supported by NSF grant CCF-1618866.

© Springer International Publishing AG 2017
F. Ellen et al. (Eds.): WADS 2017, LNCS 10389, pp. 277–288, 2017.
DOI: 10.1007/978-3-319-62127-2_24

277

from Zλ to the edges of G. For each vertex v ∈ V , define

fin(v) =
∑

(u,v)∈E

f(u, v) and fout(v) =
∑

(v,w)∈E

f(v, w),

and define the net flow into a vertex v to be fin(v) − fout(v). We say that f
is a circulation with λ-modular demands, or λ-CMD for short, if it satisfies the
modular flow-balance constraints, which state that for each v ∈ V ,

fin(v)− fout(v) ≡ d(v) (mod λ).

Observe that a demand of d(v) is equivalent to the modular “supply” requirement
that the net flow out of this vertex modulo λ is λ− d(v).

Define the cost of a circulation f to be the weighted sum of the flow values
on all the edges, that is,

cost(f) =
∑

(u,v)∈E

wt(u, v) · f(u, v).

Given a directed graph G and the vertex demands d, the λ-CMD problem is
that of computing a λ-CMD of minimum cost. (Observe that there is no loss in
generality in restricting the flow value on each edge to Zλ, since the cost could be
reduced by subtracting λ from this value without affecting the flow’s validity.)

The standard minimum-cost circulation problem (without the modular as-
pect) is well studied. We refer the reader to any of a number of standard sources
on this topic, for example, [1, 2, 6, 8]. In contrast, λ-CMD is complicated by the
“wrap-around” effect due to the modular nature of the demand constraints. A
vertex’s demand of d(u) units can be satisfied in the traditional manner by hav-
ing a net incoming flow of d(u), but it could also be met by generating a net
outgoing flow of λ−d(u) (not to mention all variants thereof that involve adding
multiples of λ). Our main results are:

– 2-CMD can be solved exactly in polynomial time (see Section 4).
– 3-CMD is NP-hard (see Section 5).
– There is a polynomial time 4(λ−1)-approximation to λ-CMD (see Section 6).

In Section 2 we discuss the relevance of the λ-CMD problem to a traffic-
management problem. In Section 3 we present some preliminary observations
regarding this problem. In Sections 4–6 we present each of our three main results.

2 Application to Traffic Management

Our motivation in studying the λ-CMD problem arises from an application in
traffic management. In urban settings, intersections are the shared common re-
source between vehicles traveling in different directions, and their control is
essential to maximizing the utilization of a transportation network [9]. There

278 P. Dasler and D.M. Mount

are numerous approaches to modeling traffic flow and diverse computational ap-
proaches to solve and analyze the associated traffic management problems [4,11].
Despite the popular interest in automated traffic systems, there has been rela-
tively little work on this problem from the perspective of algorithm design.

In an earlier paper [3], we considered the problem of scheduling the move-
ments of a collections of vehicles through a system of unregulated crossing. Our
approach was based on the idealized assumption that the motion of individual
vehicles in the system is controlled by a central server. A more practical ap-
proach is based on aggregating vehicles into groups, or platoons, and planning
motion at the motion of these groups [7, 10].

We consider the problem in this aggregated form, but from a periodic perspec-
tive. Consider an urban transportation network consisting of a grid of horizontal
and vertical roads as laid out on a map. Each pair of horizontal and vertical
roads meets at a unique intersection controlled by a traffic light that alternates
between horizontal and vertical traffic, such that the pattern repeats over a time
interval λ. We assume throughout that λ has been discretized to a reasonably
small integer value, say in terms of seconds or tens of seconds.

More formally, we say that a traffic-light schedule is λ-periodic if repeats
every λ time units. We consider a traffic management system of the foreseeable
future where the traffic light schedule is transmitted to the vehicles, which in
turn may adjust their speeds to avoid excessive waiting at intersections. While
vehicles may turn at intersections, the schedule is designed to minimize the delay
of straight-moving traffic.

To motivate the connection with modular circulations, consider a four-sided
city block (see Fig. 1). Let a, b, c, and d denote the intersections, and let tab, tbc,
tcd, tad denote the travel times between successive intersections along each road
segment. If the road segment is oriented counterclockwise around the block (as
shown in our example), these travel times are positive, and otherwise they are
negative. Suppose that the traffic-light schedule is λ-periodic, and that at time
t = ta the light at intersection a transitions so that the eastbound traffic can
move horizontally through the intersection (see Fig. 1(a)). In order for these ve-
hicles to proceed without delay through intersection b, this light must transition
from vertical to horizontal at time tb = ta + tab (see Fig. 1(b)).

t = 0

a b

cd

t = 0

t = tab

a b

cd

tab

tbc

t = tab + tbc

a b

cd

tbc

t = tab + tbc + tcd + tda

a b

cd

tcd

tda

(a) (b) (c) (d)

Fig. 1. Delay-free traffic-light schedule.

Modular Circulation and Applications to Traffic Management 279

Reasoning analogously, for the other intersections, it follows that the vertical-
to-horizontal transition times for intersections c and d are tc = tb + tbc and
td = tc + tcd, respectively (see Fig. 1(c)). On returning to a (see Fig. 1(d)), we
find that

ta ≡ ta + (tab + tbc + tcd + tda) (mod λ).

Thus, in order to achieve delay-free flow around the intersection in a λ-periodic
context, we must satisfy the constraint

tab + tbc + tcd + tda ≡ 0 (mod λ).

Since the transportation times along the road segments are not under our control,
in order to satisfy this constraint, we introduce an (ideally small) delay δij ≥ 0
along each road segment ij. This yields the new constraint

(tab + δab) + (tbc + δbc) + (tcd + δcd) + (tda + δda) ≡ 0 (mod λ),

or equivalently, if we define T = tab + tbc + tcd + tda to be the sum of (signed)
travel times of the road segments around this block, we have

δab + δbc + δcd + δda ≡ − T (mod λ). (1)

The upshot is that if vehicles travel at a reduced speed so that the transit time
along each of the road segments includes the associated delay, then the straight-
line vehicular traffic along each road need never pause or wait at any traffic
signal. The objective is to minimize the sum of delay values over all the road
segments in the network, which we refer to as the total delay.

More formally, the transportation network is modeled as a set of horizontal
and vertical roads. This defines a directed grid graph whose vertices are the
intersections, whose edges are the road segments, and whose (bounded) faces are
the blocks of the city. For each pair of adjacent intersections i and j, let tij denote
the delay-free travel time along this road segment. For each block u, define the
total signed travel time about u to be the sum of the travel times for each of
the road segments bounding u, where the travel time is counted positively if
the segment is oriented counterclockwise about u and negatively otherwise. Let
T (u) denote this value modulo λ. A λ-periodic traffic-light schedule assigns a
delay to each road segment so that for each block, these delays satisfy Eq. (1).
The objective is to minimize the total delay, which is defined to be the sum of
delays over all the segments in the network.

To express this in the form of an instance of λ-CMD, let G = (V,E) denote
the directed dual of the graph, by which we mean that the vertex set V consists
of the city blocks, and there is a directed edge (u, v) ∈ E if the two blocks are
incident to a common road segment, and the direction of the road segment is
counterclockwise about u (and hence, clockwise about v). The demand of each
vertex u, denoted d(u), is set to T (u), and the weight of each edge is set to unity.

There remains one impediment to linking the λ-periodic traffic-light schedule
and the λ-CMD problems. The issue is that the delay associated with any road
segment (which may be as large as λ − 1) can be significantly larger than the

280 P. Dasler and D.M. Mount

time to traverse the road segment. If so, the capacity of the road segment to hold
the vehicles that are waiting for the next signal may spill backwards and block
the preceding intersection. In order to deal with this issue without complicating
our model, we introduce the assumption that λ is smaller than the time to
traverse any road segment. The link between the two problems is presented in
the following lemma. Due to space limitations, the proofs of this and many other
lemmas have been omitted and will appear in the full version of the paper.

Lemma 1. Given a transportation network and integer λ ≥ 2, let G be the as-
sociated directed graph with vertex demands and edge weights as described above.

(i) If there exists a λ-periodic traffic-light schedule with total delay Δ, then there
exists a λ-CMD for G of cost Δ.

(ii) If there exists a λ-CMD for G of cost Δ and for all road segments ij, tij ≥ λ,
then there exists a λ-periodic traffic-light schedule with total delay Δ.

3 Preliminaries

In this section we present a few definitions and observations that will be used
throughout the paper. Given an instance G = (V,E) of the λ-CMD problem,
consider any subset V ′ ⊆ V . Let G′ = (V ′, E′) be the associated induced sub-
graph of G, and let d(V ′) denote the sum of demands of all the nodes in V ′. We
refer to E′ as the internal edges of this subgraph, and we refer to the edges of G
that cross the cut (V ′, V \ V ′) as the interface. Given such a subgraph and any
flow f on G, define its internal flow to be only the flow on the internal edges,
and define the internal cost to be the cost of the flow restricted to these edges.
Define the interface flow and interface cost analogously for the interface edges.
Define fin(V

′) to be the sum of flow values on the interface edges that are di-
rected into V ′, and define fout(V

′) analogously for outward directed edges. The
following lemma provides necessary and sufficient conditions for the existence of
a λ-CMD.

Lemma 2. Given an instance G = (V,E) of the λ-CMD problem:

(i) For any induced subgraph G′ = (V ′, E′) and any λ-CMD f , we have

fin(V
′)− fout(V

′) ≡ d(V ′) (mod λ).

(ii) If G is weakly connected, then a λ-CMD exists for G if and only if d(V) ≡ 0
(mod λ).

It follows from this lemma the λ-CMD instance associated with any traffic-
light scheduling problem has a solution. The reason is that each edge (u, v)
contributes its travel time tuv positively to d(u) and negatively to d(v), and
therefore the sum of demands over all the vertices of the network is zero, irre-
spective of the travel times.

Modular Circulation and Applications to Traffic Management 281

4 Polynomial Time Solution to 2-CMD

In this section we show that 2-CMD, which we also call binary CMD, can be
solved in polynomial time by a reduction to minimum-cost matching in general
graphs. Intuitively, the binary case is simpler because the edge directions are
not significant. If a vertex is incident to an even number of flow-carrying edges
(whether directed into or out of this vertex), then the net flow into this vertex
modulo λ is zero, and otherwise it is one. Thus, solving the problem reduces
to computing a minimum-cost set of paths that connect each pair of vertices of
nonzero demand, which is essentially a minimum-cost perfect matching in a com-
plete graph whose vertex set consists of the subset vertices of nonzero demand
and whose edge weights are distances between vertices ignoring edge directions.
The remainder of this section is devoted to providing a formal justification of
this intuition.

Recall G = (V,E) is a directed graph, and d(v) denotes the demand of vertex
v. Since λ = 2, for each v ∈ V , we have d(v) ∈ {0, 1}. Let G′ = (V,E′) denote
the graph on the same vertices as G but with directions removed from all the
edges. We may assume that G′ is connected, for otherwise it suffices to solve the
problem separately on each connected component of G′. We set the weight of
each edge of G′ to the weight of the corresponding edge of G. If there are two
oppositely directed edges joining the same pair of vertices, the weight is set to
the minimum of the two.

Let U = U(G) denote the subset of vertices of V whose demand values are
equal to 1. By Lemma 2(ii), we may assume that d(V) ≡ 0 (mod λ). Therefore,
d(V) is even, which implies that |U | is also even. For each u, v ∈ U , let π(u, v)
denote the shortest weight path between them in G′, and let wt(π(u, v)) denote

this weight. Define Ĝ = (U, Ê) to be a complete, undirected graph on the vertex
set U , where for each u, v ∈ U , the weight of this edge wt(π(u, v)). (This is well

defined by our assumption that G′ is connected.) Since Ĝ is complete and has an
even number of vertices, it has a perfect matching. The reduction of 2-CMD to
the minimum-cost perfect matching problem is implied by the following lemma.

Lemma 3. lem:2-cmd Given an instance G = (V,E) of the 2-CMD problem,
the minimum cost of any 2-CMD for G is equal to the minimum cost of a perfect
matching in Ĝ.

Since Ĝ is dense, a minimum-cost perfect matching can be constructed in
O(|U |3) time. The graph can be computed in O(n3) time, where n = |V |, by
applying the Floyd-Warshall algorithm for computing shortest paths [2]. Thus,
the overall running time is O(n3).

Theorem 1. It is possible to solve the 2-CMD problem in O(n3) time on any
instance G = (V,E), where n = |V |.

5 Hardness of 3-CMD

In this section, we present the following hardness result for λ-CMD.

282 P. Dasler and D.M. Mount

Theorem 2. For λ ≥ 3, the λ-CMD problem is NP-hard.

The reduction is from positive 1-in-3-SAT [5]. For the sake of brevity and
simplicity, we show the proof for the case λ = 3 here, but the method easily
generalizes (as will be explained in the full version of the paper). Let F denote a
boolean formula in 3-CNF, where each literal is in positive form. Throughout, for
α ∈ {0, 1, . . . , λ−1}, we use the term α-vertex to denote a vertex whose demand
is α. The reduction involves two principal components, a variable gadget which
associates truth values with the variables of F and a clause gadget which enforces
the condition that exactly one variable in each clause is assigned the value True.

5.1 Variable Gadget

Before discussing the general gadget, we describe a fundamental building block
from which all variables will be constructed. The block consists of six vertices,
three 1-vertices and three (λ − 1)-vertices (i.e., 2-vertices), connected together
with edges as shown in Figure 2(a). Edges connecting 1-vertices have weight
wt(u, v) = 1.5, while all other edges are of weight wt(u, v) = 1.

If a flow of 1 is sent from each 2-vertex to its connected 1-vertex, the 2-vertices
overflow and all demands are satisfied with cost(f) = 3 (see Figure 2(b)). This
flow, in which there is no flow across the interface edges, represents a logical
value of False.

If instead a flow of 1 is sent across the interface edges, then the demands
of the 2-vertices are satisfied. A flow of 1 across each edge originating at the
central 1-vertex will cause it to overflow and will satisfy each of the connected
1-vertices. This flow, in which each interface edge carries a flow of 1, represents
a logical value of True and again has cost(f) = 3 (see Figure 2(c)).

TrueFalse

(a) (b)

1.5 1.5 1.5 1.5

2 2 2 2 2

1 11 1 11

1 1 11 1 1

1 1 1

1 1

2

1.5 1.5

2 2 2

1 11

(c)

Fig. 2. (a) The fundamental building block used to build variable gadgets. Interface
edges are dashed gray segments. (b,c) CMDs representing the assignment of False and
True values, respectively, with the flow values in boxes.

If every interface edge of a variable gadget carries the same flow and that flow
is either 0 or 1, that variable is said to be interface-consistent. If all variables
are consistent for a given flow, then that flow is said to be variable-consistent.
Notice that both logical values above are realized via interface-consistent flows.

Lemma 4. Given a fundamental block, a satisfying flow has cost ≤ 3 if and
only if that flow is interface-consistent.

Modular Circulation and Applications to Traffic Management 283

Proof. Each 2-vertex can only be satisfied by: (1) sending a flow of 1 across one
of its edges or (2) sending a flow of 2 across both of its edges (in both cases the
vertex’s demand overflows).

In the second case, the 2-vertex sends a flow of 2 to its neighboring 1-vertex.
As per Lemma 2(i), that vertex now requires a flow of 2 across its other edge in
order to have its demand satisfied. Together these flows come at a cost of 5 (one
of these edges has a weight of 1.5), therefor no 2-vertex may be satisfied by a
flow greater than 1 without a cost greater than 3.

There exists a satisfying flow for a fundamental block if and only if the total
flow across its interface edges is equivalent to 0 (mod λ) (see Lemma 2). Given
this and the fact that no single interface flow may equal 2, the flows across the
interface edges must either all be 0 or all be 1, i.e., the over all flow must be
interface consistent for it to be a satisfying flow.

As variables may appear in multiple clauses, we need a mechanism by which
existing variables can be expanded. For this, we create an expansion module,
any number of which can be added to a variable so that there are three interface
edges for each clause in which that variable appears.

To understand how this module functions, let us first look at the case when
two fundamental blocks are connected together. This connection occurs through
a shared 2-vertex, so that what was an interface edge for one block becomes the
connection between a 2-vertex and 1-vertex in the other block (see Figure 3).
Recall that the value assignment of a variable is determined by the direction of
flow from the 2-vertices, with flow along the interface representing True and
internal flow (i.e., flow to the connected 1-vertices) representing False. Because
the outgoing edges of the shared 2-vertex are simultaneously an interface edge
of one block and an internal edge of the other, pushing a flow across either edge
will assign opposing values to the blocks.

1 11

1 112 2 2

2 2

1 1

1

11
1 1

(a) (b)

1 11

1 112 2

2 2

2

Fig. 3. Two fundamental blocks connected via a shared 2-vertex, with figure (b) show-
ing a flow that is satisfying but not interface-consistent.

Knowing this, the module is constructed as a double-negative, ensuring that
it is assigned the same value as the variable it extends. A fundamental block
is used as a hub and to this hub we attach two more fundamental blocks (see
Figure 4). When attached to a variable, this module creates four new interface
edges and consumes one, thus extending the variable by three interface edges.

284 P. Dasler and D.M. Mount

1 1

1 112 2 2

2

1 11

2 2
1

1

1

1 11

2 2

2

2

1 1

1

2

2 2

1 11

2 2

(a) (b)

1 11

2 2 2

1
1.5 1.5 1.5 1.5

1.5
1.5

1.5
1.5

Fig. 4. (a) A fundamental block with a single extension module attached. (b) The same
structure rearranged to emphasize the two clause outputs, each with three interface
edges.

While the structure of the fundamental blocks is as described above, the
weighting must be adjusted to maintain equal costs between the True and False
states. Rather than each fundamental block having two edges of weight 1.5, only
the rightmost block in the expansion module has such edges; all others are of
weight 1. In this way, the minimal cost of a consistent satisfying flow across the
module is 8, regardless of the value assigned to the variable. This is easily verified
by assigning a truth value to the gadget (fixing an interface-consistent flow on
the interface edges of 0 or 1) and then traversing the structure, satisfying the
demand in each vertex by assigning flow to its unused edge.

Given this, Lemma 4, and the fact that the expansion module is constructed
from fundamental blocks, we have the following:

Lemma 5. Given an expansion module, there exists an interface-consistent flow
of internal cost 8 (in either the True or False cases), and any other satisfying
flow has a strictly larger internal cost.

To construct a gadget for a variable vi, appearing in c(vi) clauses, begin with
a fundamental block and connect c(vi) − 1 expansion modules to it. Doing so
provides c(vi)λ interface edges and yields the following result:

Lemma 6. Given a variable gadget, there exists an interface-consistent flow of
internal cost 3+ 8[c(vi)− 1] (in either the True or False cases), and any other
satisfying flow has a strictly larger internal cost.

5.2 Clause Gadget

The basis for the clause gadget is a single 1-vertex with three incoming edges,
one for each literal. These edges have a weight wt(u, v) = γ and are connected
to the appropriate variables as their outgoing interface edges. If a single literal
is True, one of these edges will carry a flow of 1, satisfying the demand of the
clause vertex. If more literals are True, the demand underflows and the vertex
is left unsatisfied. It is possible to satisfy the vertex by creating flows on these
edges greater than 1, but such flows can be made cost-prohibitive by setting the
edge weights γ sufficiently high.

Modular Circulation and Applications to Traffic Management 285

Recall that each variable gadget produces λ copies of its respective variable
(three interface edges in this example) per clause in which it appears. Because of
this, the clause gadget must also be created in triplicate. Every clause consists of
three 1-vertices, each with an incoming edge from its three literals (see Figure 5).
Their weighting and behavior are as described above. Since there are no internal
edges in the clause gadgets, they do not contribute to the cost of the flow (but
their interface edges will).

1

1

1

γ
γ

γ
γ

γ
γγ

γ
γ

Fig. 5. A full clause gadget, with three inputs from each of three literals.

5.3 Final Construction

Each variable in F is represented by a fundamental block connected to c(vi)− 1
expansion modules, creating c(vi)λ outputs. Thus, λ outputs are linked to each
of the appropriate clause gadgets. The size of the variable gadget is a linear
function of the number of clauses in which that variable appears and can thus
be constructed in polynomial time.

If F is satisfiable, then a 3-CMD exists that is variable-consistent. In this case,
each fundamental block incurs a cost of 3, and each expansion module incurs
an additional cost of 8 for a flow representing a consistent truth value across
its interface and the interfaces of the modules/fundamental block to which it is
attached, as per Lemma 5.

For each clause, create λ 1-vertices, each connected to the clause’s three
literals by incoming edges. As there are no edges between these vertices, there is
no flow possible within the clause gadget, resulting in an internal cost of 0. The
size of the clause gadget is constant.

Finally, the flow on the edges between the variable gadgets and clause gadgets
has yet to be counted as they are interface edges for both gadgets. Each clause
gadget contains λ 1-vertices, with each receiving a flow of 1 across edges of weight
γ. Thus, these add a cost of 3|C|γ, where |C| is the number of clauses in F .

If F is not satisfiable, then some set of variables must have inconsistent out-
puts in order to create a valid CMD. As shown in Lemma 4, these inconsistencies
will always lead to a strictly greater cost. Thus:

Lemma 7. Given a positive boolean formula F in 3-CNF, in polynomial time
it is possible to construct an instance of 3-CMD that has a satisfying flow with
cost(f) ≤

∑
vi∈V (3 + 8[c(vi)− 1] + 3|C|γ) if and only if F is 1-in-3 satisfiable.

286 P. Dasler and D.M. Mount

6 Approximation Algorithm

In this section, we present an 4(λ−1)-factor approximation to the λ-CMD prob-
lem for λ ≥ 2. Before presenting the algorithm, we introduce some terminology.
Consider an instance G = (V,E) of the λ-CMD problem, with vertex demands
d. Let G′ = (V,E′) be (as defined in Section 4) the undirected version of G. Let
us assume that G′ is connected. Let U = U(G) denote the subset of vertices of V
whose demand values are nonzero. Define SMT (U) to be a Steiner minimal tree
in G′ whose terminal set is U (that is, a connected subgraph of G′ of minimum
weight that contains all the vertices of U).

As in Section 4, define Ĝ = (U, Ê) to be the complete, undirected graph over
the vertex set U , where for each u, v ∈ U , the weight of this edge is the weight of
a minimum weight path between u and v in G′. Given any U ⊆ V , let MST (U)
denote any minimum spanning tree on the subgraph of G′ induced on U . From
standard results on Steiner and minimum spanning trees we have the following.

Lemma 8. For any U ⊆ V , wt(MST (U)) ≤ 2 · wt(SMT (U)).

Define a balanced partition to be a partition {U1, . . . , Uk} of U such that
for 1 ≤ i ≤ k, the total demand within Ui (that is, d(Ui)) is equivalent to
zero modulo λ. By Lemma 2(ii), we may assume that d(V) ≡ 0 (mod λ), and
so there is always a trivial partition, namely {V } itself. Define cost(Ui) to be
cost(SMT (Ui)), and define the cost of a balanced partition to be the sum of costs
over its components. A minimum balanced partition for G is a balanced parti-
tion of minimum cost. The following lemma establishes the connection between
balanced partitions and minimum modular circulations.

Lemma 9. Consider an instance G = (V,E) of λ-CMD. Let Ψ = (U1, . . . , Uk)
denote a minimum balanced partition of G, as defined above, and let f denote
any minimum cost λ-CMD for G. Then cost(Ψ) ≤ |f | ≤ (λ− 1) · cost(Ψ).

By the above lemma, it suffices to compute a balanced partition for G of low
cost. We will present a simple approximation algorithm that outputs a balanced
partition whose cost is within a factor of 4 of the optimum.

The construction begins with the metric closure Ĝ defined above. In a manner
similar to Kruskal’s algorithm, we sort the edges of Ĝ in increasing order, and
start with each vertex of Ĝ in a separate component. All these components are
labeled as active. We process the edges one by one. Letting (u, v) denote the
next edge being processed, if u and v are in distinct components, and both
components are active, we merge these components into a single component. If
the sum of the demands of the vertices within this component is equivalent to
zero modulo λ, we label the resulting component as finished, and output its set of
vertices. Because the total sum of demands of all the nodes is equivalent to zero
modulo λ, it follows that every vertex is placed within a finished component, and
therefore the algorithm produces a balanced partition of Ĝ (and by extension, a
balanced partition of G).

Modular Circulation and Applications to Traffic Management 287

This algorithm has the same running time as Kruskal’s algorithm. (Observe
that we can associate each component with its sum of demands, thus enabling
us to determine the sum of merged components in constant time.) The following
lemma establishes the approximation factor for this construction.

Lemma 10. Let Ψ ′ denote the balanced partition generated by the above al-
gorithm, and let Ψ denote the optimum balanced partition. Then cost(Ψ ′) ≤
4 · cost(Ψ).

Combining Lemmas 9 and 10(ii), it follows that our algorithm achieves an
approximation factor of 4(λ−1). While obtaining the best running time has not
been a focus of this work, it is easy to see that this procedure runs in polynomial
time. Let n = |V |. The graph Ĝ can be computed in O(n3) time by the Floyd-
Warshall algorithm [2]. The Kruskal-like algorithm for computing the balanced
partition can be performed in O(n2 log n) time, as can the algorithm of Lemma 9.
Thus, the overall running time is O(n3).

Theorem 3. Given an instance G = (V,E) of the λ-CMD problem for λ ≥ 2,
it is possible to compute a 4(λ−1)-approximation in time O(n3), where n = |V |.

References

1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, 1993.

2. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-
rithms. McGraw-Hill Higher Education, 2nd edition, 2001.

3. P. Dasler and D. M. Mount. On the complexity of an unregulated traffic crossing.
In Proc. 14th Internat. Sympos. Algorithms Data Struct., volume 9214 of Lecture
Notes Comput. Sci., pages 224–235. Springer-Verlag, 2015.

4. K. M. Dresner and P. Stone. A multiagent approach to autonomous intersection
management. J. Artif. Int. Res., 31:591–656, 2008.

5. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., 1979.

6. A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. Journal of the ACM, 36:873–886, 1989.

7. S. I. Guler, M. Menendez, and L. Meier. Using connected vehicle technology to
improve the efficiency of intersections. Transportation Research Part C: Emerging
Technologies, 46:121–131, 2014.

8. J. B. Orlin. A polynomial time primal network simplex algorithm for minimum
cost flows. Mathematical Programming, 78:109–129, 1997.

9. R. Tachet, P. Santi, S. Sobolevsky, L. I. Reyes-Castro, E. Frazzoli, D. Helbing, and
C. Ratti. Revisiting street intersections using slot-based systems. PLOS ONE,
11(3):e0149607, 2016.

10. J. J. B. Vial, W. E. Devanny, D. Eppstein, and M. T. Goodrich. Scheduling
autonomous vehicle platoons through an unregulated intersection. In M. Goerigk
and R. Werneck, editors, 16th Wkshp. Alg. Approaches Transport. Model., Opt.,
and Syst. (ATMOS 2016), volume 54, pages 1–14, 2016.

11. J. Yu and S. M. LaValle. Multi-agent path planning and network flow. In E. Fraz-
zoli, T. Lozano-Perez, N. Roy, and D. Rus, editors, Algorithmic Foundations of
Robotics X, pages 157–173, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

288 P. Dasler and D.M. Mount

	24 Modular Circulation and Applications to Traffic Management�
	1 Introduction
	2 Application to Traffic Management
	3 Preliminaries
	4 Polynomial Time Solution to 2-CMD
	5 Hardness of 3-CMD
	5.1 Variable Gadget
	5.2 Clause Gadget
	5.3 Final Construction

	6 Approximation Algorithm
	References

