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Abstract—We study complex non-zero-sum iterated two-
player games, more specifically, various strategies and their
performances in iterated traveler’s dilemma (ITD). We focus
on the relative performances of several types of parameter-
ized strategies, where each such strategy type corresponds
to a particular “philosophy” on how to best predict oppo-
nent’s future behavior and/or entice the opponent to alter
its behavior. We are particularly interested in adaptable,
learning and/or evolving strategies that try to predict the
future behavior of the other player in order to optimize
their own behavior in the long run. We also study strategies
that strive to minimize risk, as risk minimization has been
recently suggested to be the appropriate paradigm for ITD
and other complex games that have posed difficulties to
classical game theory. We share the key insights from an
elaborate round-robin tournament that we have implemented
and analyzed. We draw some conclusions on what kinds of
adaptability and models of the other player’s behavior seem
to be most effective in the long run. Lastly, we indicate some
promising ways forward toward a better understanding of
learning how to play complex iterated games well.

Keywords-game theory; iterated traveler’s dilemma

I. INTRODUCTION

Game theory provides mathematical foundations for
modeling interactions among, in general, self-interested
autonomous agents that may need to combine competition
and cooperation in non-trivial ways in order to meet their
objectives [19], [20], [24]. A classical example of such
interactions is the (iterated) Prisoner’s Dilemma [1], [6],
[2], a two-person non-zero sum game that has been exten-
sively studied by psychologists, sociologists, economists
and political scientists, as well as mathematicians and
computer scientists. We study an interesting and highly
complex 2-player game known as the (iterated) Traveler’s
Dilemma [8], [9], [14], [18]. Traveler’s Dilemma (TD)
is a non-zero sum game in which each player has a
large number of possible actions or moves. In the iterated
context, this means many possible actions in each round
and thus, for games with many rounds, an astronomic
number of possible strategies overall. What makes Iterated
TD particularly interesting is that its structure defies the
usual prescriptions of the classic game theory insofar as
what constitutes an “optimal” or a “good” strategy.

This paper is organized as follows. We first define the
Traveler’s Dilemma, briefly motivate its study, and survey
the prior art. We then outline several types of strategies
that have been studied in the Iterated TD context, with an
emphasis on (i) selected classes of learning and adaptable
strategies and (ii) some strategies that attempt to capture

the idea of risk minimization [13]. We summarize our
ITD round-robin tournament and analyze performances
of various strategies. In that analysis, we place the main
emphasis on comparison-and-contrast between various
“greedy” strategies studied in the prior experimental work
on ITD, especially (i) those that tend to greedily always
bid high and (ii) those that try to “outsmart” the opponent
[10], [11], against (iii) those strategies that are explicitly
or implicitly striving to minimize the risk in the iterated
play. We then draw the key lessons from our analysis,
and propose conclusions of a broader significance for
iterated non-zero sum games. Lastly, we outline some open
problems and possible ways forward on gaining deeper
understanding of complex strategic interactions among
self-interested agents, especially when such interactions
provide incentives for cooperative behavior.

II. TRAVELER’S DILEMMA

Traveler’s Dilemma was originally introduced in [4].
The motivation behind the game was to show the lim-
itations of classical game theory [16], and in particular
the concepts of individual rationality that stem from
game-theoretic notions of “optimal play” based on Nash
equilibria [4], [5], [24]. The original version of TD (the
“default” version), is described as follows:

An airline loses two suitcases belonging to two dif-
ferent travelers. Both suitcases are identical and contain
identical items. The airline is liable for a maximum of
$100 per suitcase. The two travelers are separated so that
they cannot communicate with each other, and asked to
declare the value of their lost suitcase and write down
(bid) a value between $2 and $100. If both claim the same
value, the airline will reimburse each traveler the declared
amount. However, if one traveler declares a smaller value
than the other, this lower bid will be taken as the true
valuation, and each traveler will receive that amount
along with a bonus/penalty: $2 extra will be paid to the
traveler who declared the lower value and a $2 deduction
will be taken from the person who bid the higher amount.
So, what value should a rational traveler declare?

A tacit assumption in the default formulation of TD is
that the bids must be integers: the granularity parameter
is $1, as this amount is the smallest possible difference be-
tween two different bids. Generalized version of (iterated)
TD, where the granularity of bids is considered (together
with the bonus value) one of the game’s key parameters
and the game structure examined as those parameters are



varied, is studied in [21]. The default TD’s unique Nash
Equilibrium (NE) is the action pair (p, q) = ($2, $2);
however, this NE is clearly rather bad for both players,
assuming that players’ utilities are directly proportional to
the dollar amounts they receive. Yet, it has been argued
[4], [9], [12] that a perfectly rational player, according
to the classical game theory, would “reason through” and
converge to choosing to bid the lowest possible value.
Given that TD is symmetric, each player would reason
along the same lines and, once selecting $2, would not
deviate from it. In contrast, the non-equilibrium pair
of strategies ($100, $100) results in each player earning
$100. Adopting one of the alternative notions of game
equilibria found in the classical literature does not seem
to help. For instance, [14] argue that the action pair
($2, $2) is also the game’s only evolutionary equilibrium.
Similarly, seeking sub-game perfect equilibria (SGPE)
[17] of Iterated TD would not result in more favorable
outcomes, either: the set of a game’s SGPEs is a subset of
that game’s full set of Nash equilibria in mixed strategies.
Hence, the early studies of TD concluded that this game
demonstrates a woeful inadequacy of the classical game
theory. However, it has been experimentally shown that
humans (both game theory experts and laymen) tend to
play far from the NE, and generally at or close to the
maximum possible bid ($100 in the default case), and
therefore fare much better than if they followed the Nash
equilibrium approach [8], [9].

It has been posited recently that iterated risk minimiza-
tion [13], and not Nash or evolutionary or other classical
notions of game equilibria, provide a satisfactory notion
of a solution for many games that are challenging from
the classical game theory stand-point, including but not
limited to ITD. In particular, it has been argued that,
for the default version of ITD (with the bonus value of
b = 2 and the bid granularity g = 1 [21]), the unique risk
minimizing pure strategy is to always bid $97 [13]. An
experimental investigation of ITD [8] indicated that $97
is the most successful strategy “in practice”. We therefore
expand the ITD tournament originally studied in [10], [11]
to include some risk-minimization strategies. Two such
strategies are (i) to always bid $97 and (ii) in each round to
pick, uniformly at random, one of {96, ..., 100}; notice that
this interval corresponds to the theoretically optimal (with
respect to risk minimization) interval {100−2b, ..., 100} as
discussed in [13]. Other, more complex strategies (some of
which combine the idea of risk minimization with different
ways predicting the other player’s next bid) are discussed
in next section.

III. ITERATED TD TOURNAMENT

Our Iterated Traveler’s Dilemma tournament has been
inspired by Axelrod’s Iterated Prisoner’s Dilemma tour-
nament [1], [3]. It is a round-robin tournament where each
strategy plays against every other strategy N matches,
where a match consists of T rounds. The agents do not
know T or N and cannot tweak their strategies with
respect to the duration of the encounter. Similarly, the

strategies are not allowed to use any other assumptions
(such as, e.g., the nature of the opponent they are playing
against in a given match). Indeed, the only data available
to the learning and adaptable strategies in our “pool” of
tournament participants is what they can learn and infer
about the future rounds, against a given opponent, based
on the bids and outcomes of the prior rounds of the current
match against that same opponent; no other knowledge of
meta-knowledge of any kind is available to the agents.

In order to make a reasonable baseline comparison,
we use the same classes of strategies as in [10], ranging
from rather simplistic to moderately complex. None of
the models of the opponent’s behavior is mathemati-
cally, cognitively or computationally hard to understand
or implement. Therefore, our strategies and their relative
performances can be easily re-validated by the research
community. We briefly outline the strategies tournament
below; more detailed descriptions can be found in [10].

The “Randoms”: The first, and perhaps the simplest,
class of strategies play a random value, uniformly dis-
tributed across a given interval. We have implemented
three instances of such strategies using the following inter-
vals: {2, 3, ..., 100}, {99, 100} and {96, 97, 98, 99, 100}.
The first two random strategies were originally introduced
in [10]; the third is motivated by the risk minimization
idea and approach found in [13].

The “Simpletons”: The second extremely simple class
of strategies which choose the exact same dollar value in
every round. The values we used in the tournament were
xt = 2 (the lowest possible), xt = 51 (“median”), xt = 99
(slightly below maximal possible; would result in maximal
individual payoff should the opponent consistently play the
highest possible action, which is $100), and xt = 100 (the
highest possible).

Tit-for-Tat-in-spirit: The next class of strategies are
those that can be viewed as Tit-for-Tat-in-spirit, where
Tit-for-Tat is the famous name for a very simple, yet
very effective, strategy for the iterated prisoner’s dilemma
[1], [2]. The idea behind Tit-for-Tat (TFT) is simple:
cooperate on the first round, then “do to thy neighbor”
(that is, opponent) exactly what he did to you on the
previous round. The baseline PD can be viewed as a
special case of our TD, when the action space of each
agent in the latter game is reduced to just two actions:
{BidLow,BidHigh}. We define two groups of Tit-for-
Tat-like strategies for ITD. One group are the simple
TFT strategies bid value ϵ below the bid made by the
opponent in the last round, where we restricted ϵ ∈ {1, 2}.
The second group are the predictive TFT strategies that
compare whether their last bid was lower than, equal to,
or higher than that of the other agent. Then a bid is made
similar to the simple TFT strategies, i.e., some value ϵ
below the bid made by other player in the last round,
where again ϵ ∈ {1, 2}. The key distinction is that a bid
can be made relative to either the opponent’s last bid or
the bid made by the agent himself.

“Mixed”: The mixed strategies combine up to three
pure strategies: for each mixed strategy, a pure strategy is



selected from one of the other strategies in the competition
independently for each round, according to a specified
probability distribution. We choose to use only mixtures
of the TFT, Simpleton, and Random strategies, to simplify
analysis and ease understanding of the causes behind
various strategies’ performances. The notation in Table 1
is Mixed followed by up to three (Strategy, Probability)
pairs, where each pair represents a strategy and the
probability that that particular strategy is selected in a
given round. Simpleton strategies are represented sim-
ply by their bid, e.g. (100, 20%). Random strategies are
represented by the letter R followed by their range, e.g.
(R[99, 100], 20%). TFT strategies come in two varieties:
simple and complex. In Mixed strategies, a Simple TFT
used in the “mix” is represented by TFT (y−n), where n
is the value to bid below the opponent’s bid y. Complex
TFTs used in a given “mix” are represented with L, E,
and H indicators (denoting Lower, Equal and Higher),
followed by the bid policy. Bid policies are based on
either the opponent’s previous bid (y) or this agent’s own
previous bid (x).

Buckets - Deterministic: These strategies keep a count
of each bid by the opponent in an array of buckets. The
fullest bucket (i.e., the value that has been bid most often)
is used as the predicted value, with ties being broken by
one of the following methods: the highest valued bucket
wins, the lowest valued bucket wins, a random bucket
wins, and the most recent tied-for-the-lead bucket wins.
The strategy then bids the highest possible value strictly
below (if possible) the predicted opponent’s bid (else,
it bids $2). An instance of each tie breaking method
above competed as a different bucket-based strategy in
the tournament.

Buckets - Probabilistic: As with deterministic buckets,
this strategy class counts instances of the opponent’s bids
and uses them to predict opponent’s next bid. Rather than
picking the value most often bid, the buckets are used to
define a probability distribution according to which a pre-
diction is randomly selected. Values in the buckets decay
over time in order to assign greater weights to more recent
data than to the older data; details can be found in [10],
[22]. We have implemented two different “philosophies”
based on deterministic and probabilistic buckets, based on
whether an agent that uses the applicable bucket-based
strategy tries to be adversarial and “outsmart” the other
player by bidding “one under” the opponent’s predicted
bid, or the agent tries to be more amicable and cooperative,
and bid exactly the same value as the predicted bid of the
other player. Motivation behind the second approach is to
try to “gently push” adaptable opponents toward higher
bids in the long run.

Simple Trending: This strategy type looks at the
previous K time steps, creates a line of best fit on the
rewards earned, and compares its slope to a threshold θ.
For the original Simple Trend strategies, several variants
of which we also used in the tournament discussed in the
present paper, we refer the reader to [10]. We introduce in
this paper additional strategies based on the simple idea

of opponent’s bid prediction based on linear extrapolation.
In one new type of simple trenders, the general philoso-
phy behind Simple Trending is maintained, but with two
“tweaks”. One, if the opponent’s bids have an upward
trend, we distinguish whether the opponent’s most recent
bid is lower than ours or at least as high as ours. The
second tweak pertains to the scenario when there is no
clear-cut trending either in the upward or the downward
direction; that is, the slope of the linear best fit of the
opponent’s recent bids is within the range between −θ and
+θ. In this case, rather than always bidding “one under”
the opponent’s predicted next bid, we apply the one-under
strategy 80% of the time and we bid the highest possible
value, $100, the remaining 20% of the time. The idea
behind this tweak is to avoid the underbidding downward
spiral that may eventually “sink” both agents down to
the undesirable NE ($2, $2). The second new type of
simple trending based strategies keeps the two “tweaks” as
above, and additionally changes the response to downward
trend of the opponent’s bids: instead of cajoling such an
opponent to start increasing her bids by making the highest
possible bid, we punish the opponent for decreasing his
bids by bidding the lowest possible value, $2, thereby
sending the message that we will not allow to be under-bid
any more.

Q-learning: This type of strategies uses a learning rate
α to emphasize new information and a discount rate γ to
emphasize future gains. In particular, the learners in our
tournament are simple implementations of Q-learning [23]
as a way of predicting the best action at time (t+1) based
on the action selections and payoffs at times [1, ..., t]. This
is similar to the Friend-or-Foe Q-learning method [15],
without the limitation of having to classify the allegiance
of one’s opponent. Details on our implementation of Q-
learning strategies can be found in [10], [22].

Zeuthen Strategies [25]: A Zeuthen-based strategy
calculates the risk level of each agent, and makes conces-
sions accordingly. Risk is the ratio of loss from accepting
the opponent’s proposal vs. the loss of forcing the conflict
deal (the deal made when no acceptable proposal can be
found). While ITD is strictly speaking not a negotiation,
one can still treat each player’s bid on each round, xt and
yt, to be a proposal: if xt = i, then agent x is proposing to
agent y any pair (i, j) with j ≥ i as the next round’s action
pair. We consider the conflict deal to be the NE at ($2, $2).
Given agents’ proposals, a risk comparison is done. An
agent continues making the same bid as long as its risk
is greater than or equal to her opponent’s. Otherwise, the
agent makes the minimal sufficient concession: she adjusts
her proposal so that (i) her risk is higher than opponent’s
risk and (ii) the opponent’s utility increases as little as
possible. Due to the peculiar structure of TD, it is possible
that a “concession” actually leads to a loss of utility for the
opponent. We have implemented two Zeuthen strategies:
one that allows counter-intuitive negative concessions and
one that does not.

The metric that we use to evaluate relative performances
of various strategies is essentially “the bottom line”, that



is, appropriately normalized dollar amount that a player
would win if she engaged in the prescribed number of
plays against a particular (fixed) opponent.

IV. TOURNAMENT RESULTS

The Traveler’s Dilemma Tournament that we have
implemented involves a total of 42 competitors. Each
competitor plays each other competitor (including its own
“twin”) N = 100 times. Each match is played for
T = 1000 rounds. The relatively large number of rounds is
to ensure that various adaptable, evolving and/or learning
strategies “converge” to a stationary behavior (against a
fixed opponent). We note that “learning” or“adaptation”
of agents strictly takes place within a given match (i.e.,
across those 1000 rounds) and does not carry over from
one match to the next. The tournament settings in this
paper as well as our prior work [10], [11], [21], [22]
assume perfect information in the sense that, at the end of
each round, each agent sees not only the payoff it receives,
but also what bid the other agent made in that round.

The results of the tournament, with respect to the “bot-
tom line” performance metric, are summarized in Table
1. Some clarifications on the notation are due. In Mixed
and TFT strategies, the granularity parameter g is equal
to 1 throughout our experiments, but we use the generic
notation to be consistent with the literature on Generalized
ITD where g is allowed to vary [21]. For simple trending
strategies where the prediction of the opponent’s next bid
is based on linear extrapolation over some time window,
K denotes the time window and Eps denotes the threshold
parameter θ discussed in the previous section. Strategies
denotes just as Simple Trend are the unmodified, original
simple trending strategies as found in [10]. The Simple
Trend Tweak strategies introduced in the present paper,
share the philosophical approach of the original simple
trenders when it comes to how they react to a downward
trend of the opponent’s recent bids; they differ from Simple
Trend strategies in terms of the two “tweaks” previously
discussed. In contrast, the Simple Trend New strategies
denote those whose underlying philosophy is to punish the
downward trend of the other agent’s bids by beginning to
bid m = $2; in that sense, Simple Trend New strategies
have a Tit-For-Tat, vengeance aspect to them. Again,
we were keen to investigate whether such adversarial or
vengeful approach would tend to get punished or rewarded
in the long run – and we suspected it would tend to
get punished, as confirmed by the results in Table 1.
For the bucket-based strategies of both deterministic and
probabilistic varieties, the Under Buckets notation refers
to the old version where, whatever the prediction of the
opponent’s next bid may be, the strategy strives to bid one
under the opponent [10], [11]. In contrast, the strategies
denoted simply as Buckets are for the first time introduced
in the present paper; they are the ones that strive to match
the opponent’s next bid. In particular, the new Bucket
strategies are the more amicable and less adversarial
versions of the original Under Bucket strategies.

0.896494 Always 100
0.893108 Zeuthen Strategy - Positive
0.892622 Simple Trend Tweak - K = 3, Eps = 0.5
0.890135 Random [99, 100]
0.889497 Always 97
0.881519 Always 99
0.880039 Random [96, 100]
0.879055 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.875824 Simple Trend Tweak - K = 10, Eps = 0.5
0.861113 Simple Trend - K = 3, Eps = 0.5
0.851513 Simple Trend Tweak - K = 25, Eps = 0.5
0.819885 Mixed - TFT (y-g), 80%); (R[99, 100], 20%)
0.806206 Simple Trend - K = 10, Eps = 0.5
0.770808 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.730023 Simple Trend - K = 25, Eps = 0.5
0.719380 Simple Trend New - K = 25, Eps = 0.5
0.661882 Q Learn - alpha= 0.5, discount= 0.9
0.659993 Q Learn - alpha= 0.2, discount= 0.0
0.659053 Buckets - (Fullest, Highest)
0.658911 Q Learn - alpha= 0.8, discount= 0.9
0.657025 Q Learn - alpha= 0.2, discount= 0.9
0.655324 Q Learn - alpha= 0.8, discount= 0.0
0.654302 Q Learn - alpha= 0.5, discount= 0.0
0.636117 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.618563 Under Buckets - (Fullest, Highest)
0.610442 Simple Trend New - K = 10, Eps = 0.5
0.609484 TFT - Low(y-g) Equal(x-g) High(x-g)
0.571560 Buckets - (Fullest, Random)
0.566314 Buckets - PD, Retention = 0.8
0.562517 Buckets - PD, Retention = 0.2
0.562493 Buckets - PD, Retention = 0.5
0.525703 Under Buckets - (Fullest, Random)
0.525482 Under Buckets - PD, Retention = 0.5
0.524108 Under Buckets - PD, Retention = 0.8
0.517205 Under Buckets - PD, Retention = 0.2
0.507776 Under Buckets - (Fullest, Newest)
0.494994 TFT - Simple (y-1)
0.435022 Under Buckets - (Fullest, Lowest)
0.416794 Zeuthen Strategy - Negative
0.373517 Random [2, 100]
0.293930 Simple Trend New - K = 3, Eps = 0.5
0.025141 Always 2

Table I
RESULTS W.R.T. METRIC U1

We now summarize the main findings from our round-
robin tournament. First, when it comes to simplistic, non-
adaptable strategies, we observe the same general pattern
previously reported in [10], [11]. In particular, agents that
always bid very high (at M = $100 or close to it)
do very well overall. Unlike the results in [10] where
the “50-50” random alternation between bidding $100
and bidding $99 was the top performer, in the present
tournament the pure strategy “Always bid $100” is the
overall winner. This is due to a somewhat different pool
of opponents in comparison to the tournament in [10].
The other simple strategies which always bid high and
are oblivious to the opponents’ bids also generally do
well. Two of these strategies are inspired by [13] and



the desire to minimize risk in the iterated play. Those
risk minimization inspired strategies are “Always bid $97”
and “Randomly choose among {96, ..., 100} with equal
probabilities”. The remaining “Always bid high” strategies
are directly taken from the original Iterated TD tournament
in [10]. In our view, there is no particular significance of
the fact that some of the “bid high” strategies perform
(very slightly) better than other such strategies; who comes
out on top appears to be primarily due to the exact choice
of opponents in the tournament.

We focus on performances of various adaptable and
learning strategies. The best adaptable strategy overall
turns out to be Zeuthen-positive. That result coincides
with the outcome of earlier ITD tournaments (where
some, but not all, of the strategies were the same as in
our tournament); see [11], [21]. The consistently highly
successful performance of the Zeuthen-Positive strategy
in ITD provides some interesting lessons. Specifically, the
success of this non-greedy, long-term focused, cajoling-
the-opponent-to-increase-her-bids strategy indicates that
(i) highly collaborative behavior in general tends to get
rewarded (at least against a reasonable mix of opponents;
if most or all of other participants in the tournament
were adversarial, the results would be rather different)
and (ii) non-greedy, altruistic behavior in the early rounds,
generally turns out to get rewarded in the long run.

We next discuss “Simple Trenders”, a set of strategies
that predict the opponent’s next bid based on a pre-
specified “window” of the other agent’s K most recent
bids. We have showed in [22] that, among all classes of
closely related adaptable strategies, simple trenders are the
most consistent and successful overall. The new insights
on simple trenders are summarized below.

• The single best performer among all nine simple trending
strategies (three choices of memory windows, and three
“philosophies” insofar as how to respond to different trends
by the other player) is our modification of the “cajoling”
from [10] for the shortest time window we have experi-
mented with, namely, K = 3.

• The two relatively minor “tweaks” to the default Simple
Trending strategies as found in [10], [11] generally work
well. In particular, the combination of (i) increasing one’s
bids once the opponent’s bids reach or exceed one’s own
and (ii) ”gently pushing” the opponent to higher bids by
periodically bidding $100 when there is no clear upward
or downward trend tends to lead most adaptable opponents
to actually bid higher, thereby resulting in greater payoffs
to both players in the long run.

• Choosing to punish the opponent with a clear downward
bid tendency (by beginning to bid the lowest possible value,
m = $2) instead of encouraging such opponents toward
high(er) bids, in general, does not work well; in fact, one
of the punishing simple trender strategies turns out to be
the worst performer among all adaptable strategies. Such
adversarial behavior results in poor long-term performance
against a wide range of opponents.

• The impact of the width of the “history window” (i.e.,
memory) apparently depends greatly on the overall phi-
losophy (i.e., cajoling vs. punishing a downward-heading
opponent) of a simple trending strategy. In particular,
those simple trenders that try to entice downward-heading
opponents toward higher bids tend to do better with a
shorter memory window. In contrast, simple trenders that
punish downward-heading opponents perform decently for

relatively long memory windows (K = 25), but their
performance drastically deteriorates as the memory window
shortens, and is abysmal for K = 3.

Insofar as the adaptable strategies which use a “bucket”
based prediction of the opponent are concerned, we were
primarily interested in comparing the bucket-based strate-
gies (both deterministic and probabilistic) as originally
defined in [10], with the modified bucket-based strategies
as defined in this paper. The prediction model of what the
opponent is anticipated to bid in the next round is the same
in both types of bucket-based strategies. The difference is
in our response to the anticipated bid of the opponent.
In particular, the old bucket-based strategies that try to
bid “one under” the opponent’s predicted next bid can
be viewed as somewhat adversarial – they basically try
to outsmart the opponent. In contrast, our proposal of the
new bucket strategies, where we bid exactly the same value
that we anticipate the opponent will bid, are cooperative
in a sense that we don’t try to outsmart the opponent, but
rather indicate that we are happy to earn just as much as
they earn, thereby, hopefully, pushing the opponent toward
higher bids in general.

Our tournament results experimentally validate that
ITD, in general, tends to award cooperative behavior, at
least to the extent that we can draw general conclusions
based on such a tournament-based study, whose results
necessarily are dependent on the choice of the pool of
competitors. In particular, all amicable, “let’s bid exactly
as much as we predict the opponent to bid” strategies
outperform all “let’s outsmart and bid one under the
opponent’s next bid” bucket strategies.

V. SUMMARY AND FUTURE WORK

We study the Iterated Traveler’s Dilemma as an example
of a highly complex two-player non-zero sum game. Our
method of study is primarily experimental – via simu-
lating a round-robin tournament with a broad variety of
competing strategies. The analysis summarized herewith
has three main objectives. One, we want to investigate
to what extent adaptation and non-trivial models of one’s
opponent really help an agent, and in particular, how
do cognitively and computationally more sophisticated
strategies fare in comparison to the simple, “always bid
high” based strategies. The simple bid high strategies have
been previously experimentally found to tend to do well
both in the cognitive psychology context (i.e., with the
human subjects engaging in the game) [8], [9] and in
the prior computer simulation based studies [10], [11],
[22]. Two, given a relatively broad class of strategies (such
as Tit-For-Tats or Simple Trenders or Bucket-based), we
explore the impact of “tweaking” some key parameters.
One motivation behind this inquiry is to gain some insights
into possible ways of evolving a parameterized strategy
type toward the optimal variation (or at least, the optimal
parameter values given the fixed pool of opponents).
Second motivation behind comparing-and-contrasting dif-
ferent variants within the same underlying “philosophy”
of how play ITD is to, in essence, complement our earlier



study [21] which compares and contrasts different classes
or “teams” of strategies against each other. Last but not
least, we want to experimentally investigate to what extent
is striving for risk minimization, as defined in important
work [13], successful in the Iterated Traveler’s Dilemma
context, at least with respect to the pool of competing
strategies that we consider. While we argue that our pool
of strategies covers a fairly broad ground (in particular,
it builds on, and expands upon, the shoulder of giants
[1], [2]), we are also aware that there is no such a thing
as a fully general tournament, hence any tournament-
based study unavoidably has its limitations insofar as the
generality of its findings.

In future work, we intend to address the inherent
limitations of tournament-based studies when the pool of
participating strategies is fixed, and to dynamically evolve
the set of competitors. Such evolutionary approach to
“weeding out” less successful strategies has been found
very promising in, e.g., [7]. Evolving a set of strategies
so that, in the long run, only the most successful ones are
still around would, in case of Iterated TD, also provide
novel insights into (i) what are the good parameter values
for the parameterized classes of strategies such as those
discussed in this paper, as well as (ii) shed more light
on the interesting phenomenon of mutual reinforcement
among pairs of possibly very different adaptable strategies,
which was initially addressed in [21] but, in our opinion,
warrants a more systematic further study.
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