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Abstract. We study an interesting 2-player game known as the Iter-
ated Traveler’s Dilemma. The Traveler’s Dilemma (TD) is a non-zero
sum game in which each player has a large number of possible actions or
moves. In the iterated context, this means many possible actions in each
round and therefore an astronomic number of possible strategies overall.
What makes Iterated TD particularly interesting is that its structure
defies the usual prescriptions of classical game theory insofar as what
constitutes “good” strategies. In particular, TD has a single Nash equi-
librium (NE), yet that NE corresponds to a very low payoff for each
individual player and essentially minimizes social welfare. We study pos-
sible ways of “playing well” from the standpoint of individual players, as
well as the strategy pairs that maximize, not minimize, social welfare.
We propose a number of possible strategies for ITD, from some trivial
and rather “dumb” ones, to generalizations of “Tit-for-Tat,” well-known
from extensive studies of the (iterated) Prisoner’s Dilemma, to some
relatively sophisticated strategies where an agent tries to non-trivially
model the behavior of the other agent in order to respond better in the
future rounds. We perform a thorough comparison of 36 different strate-
gies overall via a round-robin, everyone-against-everyone tournament in
the spirit of Axelrod’s work on the Prisoner’s Dilemma [2]. We motivate
the choices of strategies that comprise our tournament and then analyze
the performance of various strategies. Finally, we draw some tentative
conclusions and outline directions for the future work.
Keywords: algorithmic game theory, two-player non-zero sum games,
strategic behavior, Nash equilibria, round-robin tournaments

1 Introduction

AI and multi-agent system (MAS) research communities have extensively stud-
ied interactions among two or more autonomous agents from a game-theoretic
standpoint. Game theory is important to AI research because it provides mathe-
matical foundations for modeling interactions among self-interested autonomous
agents that may need to combine competition and cooperation with each other
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in non-trivial ways in order to meet their objectives or maximize their individual
utilities [13, 15, 22]. A classical example of such interactions is the famous iter-
ated prisoner’s dilemma [1, 2], a two-person non-zero sum game that has been
extensively studied by not just mathematicians and computer scientists, but also
psychologists, sociologists, economists and political scientists.

We have been studying an interesting 2-player game known as the Iterated
Traveler’s Dilemma [6, 7, 9, 12]. The Traveler’s Dilemma (TD) game is a non-
zero sum game in which each player has a large number of possible actions or
moves. In the iterated context, this means many possible actions in each round
and therefore (for games with many rounds) an astronomic number of possible
strategies overall. What makes Iterated TD particularly interesting, is that its
structure defies the usual prescriptions of classical game theory insofar as what
constitutes an “optimal” or even just a “good” strategy.

There are two fundamental general problems to be addressed in this context.
One, is finding an optimal, or close to optimal, strategy. This is the central,
“default” problem in classical game theory: finding the best “play” for each agent
participating in the game. Akin to this is the problem of identifying (or evolving)
pairs of strategies that would result in an overall desirable behavior, such as
maximizing a joint utility function of some sort (e.g. “social welfare”). This
second problem is, in essence, the goal of mechanism design [22]. We have begun
investigating both these problems in the context of Iterated Traveler’s Dilemma,
a game that has thus far received only modest attention by the AI community.
In this paper we shed some light on the first of the above two problems using
a round-robin, everyone-against-everyone, many-round tournament. We draw
some tentative conclusions and discuss promising ways forward with respect to
the Iterated TD and similar games with “bad game-theoretic structures” alluded
to earlier.

This paper is organized as follows. We first describe the Traveler’s Dilemma
(TD) game and briefly discuss why we find it interesting. We also briefly survey
the existing prior art. We then describe the Iterated TD round-robin tournament
that we have devised, implemented and experimented with; we particularly focus
on the actual strategies we chose as the participants in this tournament, and on
why these strategies are good examples of the kinds of strategies one would
expect to be “reasonable” whether the actual players are humans or artificial
software agents. We outline several metrics that we have used as yardsticks of
performance of the various strategies involved in our round-robin tournament.
Next, we summarize our tournament results with respect to “the bottom line”
metric and discuss our findings. Finally, we outline some challenging directions
for future research.

2 Traveler’s Dilemma (TD)

The Traveler’s Dilemma was originally introduced by Basu in 1994 [5]. The mo-
tivation behind the game was to show the limitations of classical game theory
[11], and in particular the notions of individual rationality that stem from game
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theoretic notions of “solution” or ”optimal play” based on well-known math-
ematical concepts such as Nash equilibria [4, 5, 22]. Basu defines TD with a
parable, paraphrased as follows:

“An airline loses two suitcases belonging to two different travelers. Both suit-
cases happen to be identical and contain identical antiques. An airline manager
tasked to settle the claims of both travelers explains that the airline is liable for a
maximum of $100 per suitcase. In order to determine an honest appraised value
of the antiques, the manager separates both travelers so they can’t confer and
asks them to write down the amount of their value at no less than $2 and no
larger than $100. If both write down the same number, he will treat that num-
ber as the true value and reimburse each traveler that amount. However, if one
writes down a smaller number than the other, this smaller number will be taken
as the true dollar value, and each traveler will receive that amount along with
a bonus/malus: $2 extra will be paid to the traveler who wrote down the lower
value and a $2 deduction will be taken from the other. The challenge is: what
strategy should travelers follow to decide the value they should write down?”

Perhaps the most striking property of TD is that its unique Nash equilibrium,
the action pair (p, q) = ($2, $2), is actually rather bad for both players, assuming
the players’ utility is proportional to the dollar amount they receive. This choice
of actions results in:

– very low payoff to each player individually (basically, only slightly above the
absolutely worst possible, which is $0); and, moreover,

– it minimizes social welfare, if we understand social welfare to simply be the
sum of the two players’ individual utilities.

Yet, it has been argued [5, 7, 8] that a perfectly rational player, according to
classical game theory, would “reason through” and converge to choosing the
lowest possible value, $2, despite the fact that this results in very low payout
and a minimization of social welfare. Given that the TD game is symmetric, each
player would supposedly reason along the same line and, once selecting $2, not
deviate from it. However, the non-equilibrium pair of actions ($100, $100) results
in each player earning $100, very near the best possible payoff. Hence, the early
studies of TD concluded that this game demonstrates a woeful inadequacy of
classical, Nash Equilibrium based game theory. In addition, it has been shown
that humans (both game theory experts and laymen) will tend to play far from
the equilibrium [6], resulting in better performance than the classical approach.

TD is interesting precisely because it has a unique Nash equilibrium, yet the
corresponding strategies result in nearly as low a payoff as one can get. Adopting
an alternative notion of game equilibrium does not help, either; for example, it
is argued in [9] that the action pair ($2, $2) is also the game’s only evolutionary
equilibrium. The situation is further complicated by the fact that the game’s only
“stable” strategy pair is easily seen to be nowhere close to Pareto optimal; there
are many obvious ways of making both players much better off than if they play
the equilibrium strategies. In particular, while neither stable nor an equilibrium
in any sense of those terms, ($100, $100) is the unique action pair that maximizes
social welfare, and is, in particular, Pareto optimal. So, the fundamental question
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arises, how can agents, artificial or biological, evolve or learn to sufficiently trust
each other so that they end up playing this optimal strategy pair in Iterated TD
or any similar scenario that can be approximated as ITD? While TD shares some
important structural properties with the more famous Prisoner’s Dilemma, the
two games are also considerably different in a number of respects. First, TD is
quite a bit more complex, as each player has significantly more than two actions
at its disposal. Because of this, TD lends itself to a different class of real world
applications: those that require more than just a binary decision. For example,
two companies competing for market share can be modeled by just such a game.
By lowering its profit margin, a company can capture a larger market share (and
thus greater profit). However, if a bidding war between the two companies gets
out of hand, profit margins of both companies can quickly fall to the point where
neither company can sustain a viable business. Having a greater understanding
of what constitutes a good strategy in TD, and particularly ITD, would lend
valuable insight into such problems.

In general, the TD’s structure can be “tweaked” in various ways by control-
ling (i) the set of allowable bids (and, in particular, their “granularity”) and
(ii) the exact values of bonus/malus. We address the impact of these two pa-
rameters on game properties elsewhere, and just point out here that (a) the
interaction of the two sets of parameters is nontrivial, and (b) TD can either
be very different from or reduced to the classical PD. In the present paper, we
confine ourselves to the “default” version of TD as described above, and ask the
following question: how (dis)similar is this default version in comparison to PD.
In particular, assuming similar metrics, are appropriate modifications of the suc-
cessful strategies for the Iterated PD (as identified by Axelrod’s seminal work)
also going to be successful in the context of the Iterated TD? The objective of
the research project whose early results are summarized in this paper, therefore,
are as follows:

– to determine to what extent lessons learned about the Iterated PD “carry
over” to the Iterated TD and, especially, where the prescriptions from the
prior art on Iterated PD may be potentially misleading or even outright fail
when applied to Iterated TD;

– to identify some successful strategies for Iterated TD, and to attempt to gen-
eralize them, thereby obtaining some insights into what approaches are likely
to lead to good outcomes (at least, with respect to the selected performance
metric(s) and the selected “pool(s)” of opponents);

– based on the above, to begin a quest for an appropriate mathematical notion
of (individual) rationality that, unlike the pursuit of Nash (or other) equilib-
ria, is actually applicable to a broad variety of two-person games (and not
just those that are of a zero-sum, or very close to zero-sum, structure).

3 The Iterated TD Tournament

Our Iterated Traveler’s Dilemma tournament is similar to Axelrod’s Iterated
Prisoner’s Dilemma tournament [3]. In particular, it is a round-robin tournament
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in which each agent plays N matches against each other agent and its own
“twin”. A match consists of T rounds. In order to have statistically significant
results (esp. given that many of our strategies involve randomization in various
ways), we have selected N = 100 and T = 1000.

In each round, both agents must select a valid bid. Thus, the action space
of an agent participating in the tournament is defined as A = {2, 3, . . . , 100}.
The method in which an agent chooses its next action for all possible histories
of previous rounds is known as a strategy. A valid strategy is a function S that
maps some set of inputs to an action: S : · → A. In general, the input may
include the entire history of prior play, or, in the case of bounded rationality
models, an appropriate summary of the past histories.

We next define the participants in the tournament, that is, the set of strate-
gies that play one-against-one matches with each other. Let C be the set of agents
competing in the tournament, defined as C = {c : (c ∈ S)∧ (c is in the tournament)}.
From this definition of the set of players or strategies, a pair of competing agents
can be captured simply as (x, y) ∈ C. We note that, while we refer to agents
as opponents and competitors, this does not imply that they necessarily always
choose to act in an adversarial manner; rather, these terms are merely a common
and convenient terminology.

We define agents’ actions as follows:

xt = the bid traveler x makes on round t.

xnt = the bid traveler x makes on round t of match n.

We next define the reward function that describes agent payoffs. The reward-
per-round (heretofore, simply reward), R : A × A → Z ∈ [0, 101], for action α
against action β, is defined as

R(α, β) = min(α, β) + 2 · sgn(β − α)

where α, β ∈ A and sgn denotes the usual sign function. Therefore, the total or
cumulative reward M : S × S → R received by agent x in a match against y is
defined as

M(x, y) =

T∑
t=1

R(xt, yt)

Within a sequence of matches, the reward received by agent x in the nth

match against y shall be denoted as Mn(x, y).

4 Strategies in the Tournament

In selecting strategies for the tournament, we considered several types or classes
of strategies, and chose a few “typical” representatives from each class, for a
total of 36 distinct strategies. These strategies range from rather simplistic and
even admittedly “dumb”, to relatively complex and sophisticated. What follows
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is a detailed description of these strategies. For a brief summary and shorthand
notation of these strategies, see Appendix A.

Random The first, and simplest, class of strategies are the oblivious agents,
who always do the same thing regardless of what the opponent does. Each of
these strategies plays a random value, uniformly distributed across a given in-
terval. Ranges are as follows:

1. ∀α : α ∈ (Z ∩ [2, 100])→ p(xt = α) = 1
99

2. ∀α : α ∈ (Z ∩ [99, 100])→ p(xt = α) = 1
2

Simpletons The second extremely simple class of strategies are what we
have dubbed simpletons: very simple deterministic strategies which choose the
same action in every round. The values we used in the tournament were xt = 2
(the lowest possible), xt = 51 (“median”), xt = 99 (slightly below the maximum;
resulting in maximal individual payoff should the opponent consistently play the
highest possible action), and xt = 100 (the highest possible).

Tit-for-Tat-in-spirit The next class of strategies are those that can be
viewed as Tit-for-Tat-in-spirit, where Tit-for-Tat is the famous name for a very
simple, yet very effective, strategy for the iterated prisoner’s dilemma [1–3, 14].
The idea behind Tit-for-Tat is simple: cooperate, until the first time your op-
ponent defects; from that round on, choose the action that your opponent did
on the previous round. Now, in the classical Iterated Prisoner’s Dilemma, each
player has only two possible actions, hence this simple description of Tit-for-
Tat’s logic defined a unique strategy. However, in the ITD, each agent has many
actions at his disposal on each round (99 of them, to be exact). In general, play-
ing high values can be reasonably considered as an approximate equivalent of
“cooperating”, whereas playing low values is an analogue of “defecting”.

Following this basic intuition, we have defined several Tit-for-Tat-like strate-
gies for ITD roughly grouped into two categories. One is the simplistic adaptation
of Axelrod’s Tit-for-Tat (TFT) for Iterated PD. Axelrod makes a case for why
TFT performs consistently better than the other strategies in his Iterated PD
tournament [3]: TFT is simple, robust, and resistent to invasive strategies. In
particular, he describes it as an evolutionarily stable strategy, a term first defined
by Smith in 1974 [17]. Each of our simplistic variants of TFT assumes that the
opponent will tend not to deviate in its choice of action between rounds. Based
on this extremely simplistic (and likely very naive) assumption, we have decided
to implement the following Tit-for-Tat-in-spirit simple strategies: xt+1 = yt− 1
and xt+1 = xt − 2.

The more complicated TFT-in-spirit strategies we have considered are those
that actually try to predict the other agent’s next action. Of course, there are
many ways of trying to predict what the other agent will do next. The particular
TFT-predictor strategies that we chosen assume that the opponent is utilizing
strategies similar to the Tit-for-Tat simple strategies. Still naive, though less so
than the simple TFT strategies. Details can be found in Appendix A.

Mixed Another class of strategies in our tournament are what we have
dubbed mixed strategies. For each mixed strategy, a strategy σ is selected from
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the other strategies in the competition (i.e., σ ∈ C) each round. Once a strategy
has been selected, the value that σ would bid at time step t is bid: xt = (σt)t.

We have implemented several instances of mixed strategies. For each strategy,
a σ is selected according to a probability mass distribution. The specific mixed
strategies have been enumerated in Appendix A.

Buckets - Deterministic Next, we have included several variants of deter-
ministic strategies where the past record is used in a “winner takes all” manner.
More specifically, these strategies keep track over time how often each action
is taken by the opposing agent in an array of “buckets”. The opposing agent’s
next move is predicted to be the value that it has bid most often. Thus buckets
updated each time-step as follows:

buckett+1[yt] = buckett[yt] + 1

The agent then plays “one under” its prediction. We have implemented sev-
eral different versions of this strategy, differentiated by their tie-breaking meth-
ods. We use the following paradigms to deterministically select from multiple
buckets that are equally full: the highest valued bucket wins; the lowest valued
bucket wins; a random bucket wins; and the newest tied bucket wins.

Buckets - Probability Mass Function The next group of strategies use
the same bucket methodology to track past behavior. Instead of winner-take-
all, however, the buckets define a probability mass distribution to predict the
opposing agent’s next move. The values decay each round (in order to emphasize
newer data over old) according to a retention rate (0 ≤ γ ≤ 1). Then, the
bucket representing the opponents current bid is incremented. More formally,
the buckets are updated each time-step as follows:

∀i : i ∈ (Z ∩ [2, 100])→ buckett+1[i] =

{
γ ∗ buckett[i] if i 6= yt,
1 + γ ∗ buckett[i] if i = yt.

The opposing agent’s next move is predicted by selecting a random value from
the resulting probability distribution and the agent then, as before, plays one
under its prediction.

We refer to this class of strategies as probability mass buckets. The main
parameter that can be varied as wished in order to produce different “bucket-
like” strategies is the rate of retention. We have entered into our tournament
several instances of this strategy using the following rate of retention values (γ):
1.0, 0.8, 0.5 and 0.2. We observe that these strategies based on probability mass
buckets are quite similar to a learning model by Capra et al. in [7].

Simple Trend Analysis The next class of strategies are based on an agent
attempting to predict simple trends based on the previous rounds. We explicitly
assume bounded rationality here; in particular, an agent will look at the most
recent k rewards and, based on those, establish a line of best fit. The slope of this
line will determine the strategy taken. If the slope is near zero then the system
is relatively stable and the agent will play the “one under” strategy, meaning,
x(t) = y(t − 1) − 1 (where x is the action of this agent, y is the opponent’s
action, and t indicates the round). If the slope is significantly negative, then the
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system is trending towards the Nash equilibrium and, thus, smaller rewards. In
this case, the agent will attempt to maximize social welfare and play $100. If the
trend is significantly positive, than the agent will continue to place the same bid
it has been in order to continue the trend of increasing rewards. We are using an
arbitrary slope threshold ε to determine a significant slope, with ε = 0.5. Thus,
our strategy is defined as follows:

xt+1 =

xt if m > ε
yt − 1 otherwise
100 if m < −ε

We are implementing variants of this strategy with the following values of
parameter k: k ∈ {3, 10, 25}.

Q-Learning We next briefly describe the participants in our ITD tourna-
ment that are capable of learning from the past and adjusting their strategy
based on what they have learned. In particular, the learners in our tournament
are simple implementations of Q-learning [20, 21] as a way of predicting the best
action at time (t + 1) based on previous action selections and payoffs. This is
similar to the Friend-or-Foe Q-learning method [10] without the limitation of
having to classify the allegiance of one’s opponent.

Q-learning is often implemented as a table of state/action pairs, which, how-
ever, scales poorly. TD already contains a large action/state space, but, when
coupled with the need for action history, the computational complexity quickly
grows to impractical proportions. To address this scaling problem, we break up
the state/action spaces into a few clusters. These clusters, meant to capture the
intention of actions, are defined as follows:

State:

1. The opponent played higher than
our last bid;

2. The opponent played the same bid
we did;

3. The opponent played lower than
our last bid.

Action:

1. Play one higher than our previous
bid;

2. Played the same bid that we
played last time;

3. Play one lower than our previous
bid.

Recall that actions are defined for just a single time-step. The actual im-
plementation treats the state as a collection of moves by the opponent over the
last k rounds, with k arbitrarily equal to 5, capturing some history without data
sizes getting out of control. All Q-values are initialized to 50.5, the mean of
all possible rewards, while the discount rate is set to 0.5, a reasonable balance
between current and future rewards.

We have implemented this basic Q-learning algorithm with the learning rates
of 0.8, 0.5 and 0.2.

Zeuthen Strategies These strategies, like the Zeuthen Strategy for negoti-
ation, base their bids on the level of one’s risk aversion [23]. While this isn’t a
strict negotiation, we are treating individual bids (i.e. xt and yt) as proposals.
The assumption is made that if yt = i, then the proposal being made by Y is
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(i+1, i), as this leads to the best outcome for Y , given its bid. The same applies
for X’s bid. Thus, at each time step t+1 the agent looks at the two bids made at
t and determines the amount of risk of each agent. For the Traveler’s Dilemma,
the conflict deal (the deal made when no acceptable proposal can be found)
would be the Nash Equilibrium of (2, 2). As defined in [15] (though originating
in [23]) the risk of an agent is:

Riskx(t) =
utility agent x loses by conceding and accepting agent y’s last offer

utility agent x loses by not conceding and causing a conflict

Due to space constraints, we leave out mathematical details and briefly sum-
marize the intuition behind Zeuthen strategies. If an agent’s risk is higher than
its opponent’s, it continues to make the same bid. If lower, then the agent makes
the minimal sufficient concession. The concession is sufficient if it causes the
agent’s risk to be higher than that of its opponent and is considered minimal by
increasing the opponent’s utility the least. Due to the peculiar structure of the
TD game matrix, it is possible for the “concession” to actually lead to a loss of
utility for the opponent. This, however, seems to go against the very notion of
what is meant by the term concession. Thus, we have implemented the following
two strategies:

1. Only positive concessions are allowed. The strategy will find the minimal
sufficient concession that does not decrease the opponent’s utility.

2. Negative and positive concessions are allowed. The strategy will find the
truly minimal ”concession” that is enough to reverse the relationship in the
agents’ risk values.

5 Utility metrics

Our experimentation and subsequent analysis were performed with respect to
four distinct utility metrics. The first, U1, treats the actual dollar amount as the
payoff to the agent. This is typical for zero-sum games and, prior literature on
Iterated TD generally considers only this metric. In contrast, U2 is a “pairwise
victory” metric: an agent strives to beat its opponent, regardless of the actual
dollar amount it receives. Whether an agent earns $1,000 or $5, it counts equally
with respect to U2 if the agent earned more than its opponent.

Finally, we introduce two additional metrics, U3 and U ′
3, that attempt to

capture both the payoff ($ amount) that an agent has achieved, and the “op-
portunity lost” due to not playing differently (and in particular, not knowing
what the other agent would do). In a sense, both of these metrics attempt to
quantify how much an agent wins compared to an omniscient agent, that is, one
that always correctly predicts the other agent’s bid without directly influencing
the opponent’s action.

6 Results and Analysis

The Traveler’s Dilemma Tournament that we have experimented with involves
a total of 36 competitors (i.e., distinct strategies). Each competitor plays each
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other competitor (including its own “twin”) 100 times. Each match is played for
1000 rounds. The following briefly summarizes our main findings.

The top three performers in our tournament, with respect to the earned $
amount as the “bottom line” (metric U1), are three dumb strategies that always
bid very high; interestingly enough, randomly alternating between the highest
possible bid ($100) and “one under” the highest bid ($99) slightly outperforms
both “always max. possible” and “always one under max. possible” strategies
(see Table B.1). We find it somewhat surprising that the performance of Tit-for-
Tat-based strategies varies so greatly depending on the details of bid prediction
method and metric choice. So, while a relatively complex TFT-based strategy
that, in particular, (i) makes a nontrivial model of the other agent’s behavior and
(ii) “mixes in” some randomization, is among the top performers with respect
to metric U1, other TFT-based strategies have fairly mediocre performance with
respect to the same metric, and are, indeed, scattered all over the tournament
table. In contrast, if metric U3 is used, then the simplest, deterministic “one un-
der the opponent’s previous bid” TFT strategy, is the top performer among all
36 strategies in the tournament – while more sophisticated TFT strategies, with
considerably more complex models of the opponent’s behavior and/or random-
ization involved, show fairly average performance. Moreover, if U3 is used as the
yardstick, then (i) 3 out of the top 4 performers overall are TFT-based strategies,
and (ii) all simplistic TFT strategies outperform all more sophisticated ones.

Not very surprisingly, the top (and bottom) performers with respect to met-
rics U1 and U2 turn out to be practically inverted; so, for example, the very best
performer with respect to U2 is the “dumb” strategy (which also happens to be
the only non-dominated strategy in the classical game theoretic-sense), namely,
“always bid $2 no matter what the other agent does”. On the other hand, the
three best performers with respect to U1 are all among the four bottom perform-
ers with respect to U2, with the only strategy that may maximize social welfare
(bidding $100 against a collaborative opponent) falling at the rock bottom of
the tournament rankings for U2. The main conclusion we draw from this perfor-
mance inversion is that when a non-zero sum two-player game has a structure
that makes it very far from being zero-sum, the traditional precepts from classical
game theory on what constitutes good strategies are quite likely to fail. This does
not mean to suggest that classical game theory is useless; rather, we’d argue that
the appropriate quantitative, mathematical models of rationality for zero-sum,
or nearly zero-sum, encounters aren’t necessarily the most appropriate notions
for games that are rather far from being zero-sum.

Back to our tournament results, what we have found more surprising than
the performance inversion between metric U2 and the other three metrics is the
relative mediocrity of the learning based strategies: Q-learning based strategies
did not excel with respect to any of the four metrics we studied. On the other
hand, it should be noted that the adaptability of Q-learning based strategies
apparently ensures that they do not do too badly overall, regardless of the choice
of metric. We also note that, for our game, the choice of the learning rate (we
selected three values, one corresponding to forgetting older rounds fairly quickly,
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one that forgets relatively slowly, and one “in between”) seems to make very little
difference: for each of the four metrics, all three Q-learning based strategies show
similar performance, and hence end up ranked adjacently or almost adjacently (in
a tournament where, recalling the “demographics”, three learning strategies are
“mingled” with 33 non-learning ones). It seems likely that our highly restrictive
reduction of the action/state space provides too little information for the Q-
learning algorithm to sufficiently model its opponent.

Another somewhat surprising outcome is fairly poor performance of both
Zeuthen-based strategies; again, the likely explanation is in the peculiar structure
of the Iterated TD game, but admittedly this result warrants further analysis.
Interestingly, the more altruistic “positive” Zeuthen strategy always outperforms
the negative one – except with respect to metric U2, for which we have already
observed a rather general performance inversion with respect to the other met-
rics.

For space constraints, we just outline some other observations, and leave
more detailed analysis for the future work:

– It is far from clear whether more complex models of the other agent really
help insofar as bidding better, and hence performing better, in the long run.

– Not all TFT-based strategies in the TD are born equal; in fact, performance
of different TFT variants tend to vary broadly with respect to all four of our
metrics. This observation opens up interesting questions from meta-learning
[18, 19] and meta-reasoning standpoints: how can one design TFT-based
strategies that are likely to do well across tournaments (that is, choices of
opponents) and across performance metrics.

7 Summary and Future Work

We have studied the Iterated Traveler’s Dilemma two-player game by designing,
implementing and analyzing a round robin tournament with 36 distinct partic-
ipating strategies. Our detailed study of the performance of various strategies
with respect to several different metrics has corroborated that, for a game whose
structure is far from zero-sum, the traditional game-theoretic notions of rational-
ity and optimality may turn out to be unsatisfactory if not outright deleterious.
Our analysis also raises several interesting questions, among which there are
several we are particularly keen to further investigate:

– to what extent can simple models of learning help performance,
– to what extent do complex opponent models help agent in iterated play, and
– what effects would an adjustment in the bonus/malus have on agents?

In our future work, in addition to more detailed analysis of the strategies
summarized in this paper and study of some new ones, we also plan to pursue a
rigorous mathematical analysis of the Iterated TD game structure similar to the
analysis done for the Iterated Prisoner’s Dilemma by Smale [16]; such analysis
would hopefully provide solid foundations for designing individual strategies that
would “push” an adaptable opponent away from the low-paying Nash equilibrium
and towards higher bids that are mutually beneficial to both agents.
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A Notations, Abbreviations, and Enumerations

Randoms The Random strategies bid a value from a uniformly distributed set
between α and β, inclusive. The notation is as follows: Random [α, β]

Simpletons These functions will bid the same value every round, referred to
as α. The notation is: Always α.

Tit-for-Tat, simple The simple Tit-for-Tat strategies bid some value ε below
the bid made by competitor c in the last round, where c ∈ [x, y]. Notation:
TFT - Simple (c− ε).

Tit-for-Tat, predictors This strategy first compares whether its bid was lower
than, equal to, or higher than that of its opponent. Then the strategy will
make a bid similar to the simple TFT strategy, i.e. some value ε below the
bid made by competitor c in the last round, where c ∈ [x, y]. Notation: TFT
- low(c0 − ε0) equal(c1 − ε1) high(c2 − ε2).Based on these assumptions, we
have decided to implement the following Tit-for-Tat-predictor strategies:

1. xt+1 =

xt if xt < yt,
xt if xt = yt,
yt − 1 if xt > yt.

2. xt+1 =

xt if xt < yt,
xt − 2 if xt = yt,
yt − 1 if xt > yt.

3. xt+1 =

xt − 2 if xt < yt,
xt if xt = yt,
yt − 1 if xt > yt.

4. xt+1 =

xt − 2 if xt < yt,
xt − 2 if xt = yt,
yt − 1 if xt > yt.

5. xt+1 =

yt − 1 if xt < yt,
xt − 1 if xt = yt,
xt − 1 if xt > yt.

Mixed The mixed strategies combine up to three strategies based on a prob-
ability mass. The notation is as follows, where each strategy being used is



14

followed by its probability of use on any given round: Mixed - [(Strategy0,
Probability0); (Strategy1, Probability1); (Strategy2, Probability2)]For each
strategy, a σ is selected according to the following probability mass functions:

1. p(σ) =

0.8 if σ = TFT Predictor 1,
0.2 if σ = Always 100,
0 otherwise.

2. p(σ) =

0.8 if σ = TFT Predictor 1,
0.2 if σ = Always 2,
0 otherwise.

3. p(σ) =


0.8 if σ = TFT Predictor 1,
0.1 if σ = Always 100,
0.1 if σ = Always 2,
0 otherwise.

4. p(σ) =

0.8 if σ = TFT Predictor 5,
0.2 if σ = Always 100,
0 otherwise.

5. p(σ) =

0.8 if σ = TFT Predictor 5,
0.2 if σ = Always 2,
0 otherwise.

6. p(σ) =


0.8 if σ = TFT Predictor 5,
0.1 if σ = Always 100,
0.1 if σ = Always 2,
0 otherwise.

7. p(σ) =

0.8 if σ = TFT Simple 1,
0.2 if σ = Rand [99, 100],
0 otherwise.

Buckets - Deterministic These strategies keep a count of each bid by the
opponent in an array of ”buckets”. The bucket that is most full (i.e., the
value bid most often) is used as the predicted value, with ties being broken
by the specified method. The notation is as follows: Buckets - Fullest Wins,
TieBreakingMethod

Buckets - Probability Mass Function As above, this strategy counts in-
stances of the opponent’s bids and uses them to predict its next bid. Rather
than picking the most bid value, the buckets are used to define a probabil-
ity mass function from which a prediction is randomly selected. Notation:
Buckets - PMF, Retention Rate = γ

Simple Trend This strategy looks at the previous k time steps, creates a line
of best fit on the rewards, and compares it to a threshold ε. Notation: Simple
Trend - K = k, Eps = ε.

Q-learning This strategy uses a learning rate α to emphasize new information
and a discount rate γ to emphasize future gains. Notation: Q Learning -
Learn Rate = α, Discount = γ

Zeuthen Strategies A Zeuthen Strategy calculates the level of risk of each
agent, and makes concessions accordingly. This “concession” may be nega-
tive, or may be restricted to having only a positive effect on the opponents
utility. Notation: Zeuthen Strategy - AllowableConcession.
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B Tournament Rankings

For definitions of the shorthand notation used here, see appendix A

B.1 Ranking Based on U1

0.730402 Random [99, 100]

0.729153 Always 100

0.729039 Always 99

0.716543 Mixed - TFT - low(y-1) equal(x-1) high(x-1), 80%); (Always 100, 20%)

0.715729 Buckets - PMF, Retention Rate = 0.2

0.714632 Buckets - PMF, Retention Rate = 0.5

0.714508 Buckets - PMF, Retention Rate = 0.8

0.661574 Simple Trend - K = 3, Eps = 0.5

0.656294 Mixed - TFT - Simple (y-1), 80%); (Random [99, 100], 20%)

0.632261 Simple Trend - K = 10, Eps = 0.5

0.627474 Mixed - TFT - low(x) equal(x) high(y-1), 80%); (Always 100, 20%)

0.604617 Simple Trend - K = 25, Eps = 0.5

0.537722 Zeuthen Strategy - Positive

0.511811 Q Learning - Learn Rate = 0.8, Discount = 0.5

0.510264 Q Learning - Learn Rate = 0.5, Discount = 0.5

0.509670 TFT - low(y-1) equal(x-1) high(x-1)

0.508661 Q Learning - Learn Rate = 0.2, Discount = 0.5

0.499094 Mixed - TFT - low(y-1) equal(x-1) high(x-1), 80%); (Always 100, 10%); (Always 2, 10%)

0.488350 Buckets - Fullest Wins, Highest Breaks Ties

0.438149 Buckets - Fullest Wins, Random Breaks Ties

0.436808 TFT - Simple (y-1)

0.420152 Buckets - Fullest Wins, Newest Breaks Ties

0.396397 Always 51

0.396228 TFT - Simple (y-2)

0.385955 Buckets - Fullest Wins, Lowest Breaks Ties

0.305122 Random [2, 100]

0.285491 Mixed - TFT - low(y-1) equal(x-1) high(x-1), 80%); (Always 2, 20%)

0.189364 Mixed - TFT - low(x) equal(x) high(y-1), 80%); (Always 100, 10%); (Always 2, 10%)

0.146467 TFT - low(x) equal(x-2) high(y-1)

0.142023 TFT - low(x) equal(x) high(y-1)

0.105737 Zeuthen Strategy - Negative

0.031648 TFT - low(x-2) equal(x) high(y-1)

0.031134 TFT - low(x-2) equal(x-2) high(y-1)

0.028321 Mixed - TFT - low(x) equal(x) high(y-1), 80%); (Always 2, 20%)

0.026786 Buckets - PMF, Retention Rate = 1.0

0.026459 Always 2

Table 1. for metric description see Section (5)


