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Abstract
We introduce a variant of the well-known minimum-cost circulation problem in
directed networks, where vertex demand values are taken from the integers modulo λ,
for some integer λ ≥ 2. More formally, given a directed network G = (V , E), each
of whose edges is associated with a weight and each of whose vertices is associated
with a demand taken over the integers modulo λ, the objective is to compute a flow
of minimum weight that satisfies all the vertex demands modulo λ. This problem is
motivated by a problem of computing a periodic schedule for traffic lights in an urban
transportation network that minimizes the total delay time of vehicles. We show that
this modular circulation problem is solvable in polynomial time when λ = 2 and that
the problem is NP-hard when λ = 3. We also present a polynomial time algorithm
that achieves a 4(λ − 1)-approximation.

Keywords Network flows and circulations · Traffic management · Approximation
algorithms · NP-hard problems

1 Introduction

Minimum (and maximum) cost network flows and the related concept of circulations
are fundamental computational problems in discrete optimization. In this paper, we
introduce a variant of the circulation problem, where vertex demand values are taken
from the integers modulo λ, for some integer λ ≥ 2. For example, if λ = 10 a vertex
with demand 6 can be satisfied by any net incoming flow of 6, 16, 26 and so on or
a net outgoing flow of 4, 14, 24, and so on. Our motivation in studying this problem
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stems from an application in synchronizing the traffic lights of an urban transportation
system.

Throughout, let G = (V , E) denote a directed graph, and let λ ≥ 2 be an integer.
Each edge (u, v) ∈ E is associated with a nonnegative integer weight, wt(u, v), and
each vertex u ∈ V is associated with a demand, d(u), which is an integer drawn from
Zλ, the integers modulo λ. Let f be an assignment of values from Zλ to the edges of
G. For each vertex v ∈ V , define

fin(v) =
∑

(u,v)∈E
f (u, v) and fout(v) =

∑

(v,w)∈E
f (v,w),

and define the net flow into a vertex v to be fin(v) − fout(v). We say that f is a
circulation with λ-modular demands, or λ-CMD for short, if it satisfies the modular
flow-balance constraints, which state that for each v ∈ V ,

fin(v) − fout(v) ≡ d(v) (mod λ).

Observe that a demand of d(v) is equivalent to the modular “supply” requirement that
the net flow out of this vertex modulo λ is λ − d(v).

Define the cost of a circulation f to be the weighted sum of the flow values on all
the edges, that is,

cost( f ) =
∑

(u,v)∈E
wt(u, v) · f (u, v).

Given a directed graph G and the vertex demands d, the λ-CMD problem is that of
computing a λ-CMD of minimum cost. (Observe that there is no loss in generality
in restricting the flow value on each edge to Zλ, since the cost could be reduced by
subtracting λ from this value without affecting the flow’s validity.)

The standard minimum-cost circulation problem (without the modular aspect) is
well studied.We refer the reader to anyof a number of standard sources on this topic, for
example, [1,3,7,10,12,14]. In contrast, λ-CMD is complicated by the “wrap-around”
effect due to the modular nature of the demand constraints. A vertex’s demand of d(u)

units can be satisfied in the traditional manner by having a net incoming flow of d(u),
but it could also be met by generating a net outgoing flow of λ− d(u) (not to mention
all variants thereof that involve adding multiples of λ). Our main results are:

• 2-CMD can be solved exactly in polynomial time (see Sect. 4).
• λ-CMD is NP-hard, for λ ≥ 3 (see Sect. 5).
• There is a polynomial time 4(λ − 1)-approximation to λ-CMD (see Sect. 6).

In Sect. 2 we discuss the relevance of the λ-CMD problem to a traffic-management
problem. In Sect. 3 we present some preliminary observations regarding this problem.
In Sects. 4–6 we present each of our three main results.

2 Application to TrafficManagement

Our motivation in studying the λ-CMD problem arises from an application in traffic
management. In urban settings, intersections are the shared common resource between
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vehicles traveling in different directions, and their control is essential to maximizing
the utilization of a transportation network [15]. There are numerous approaches to
modeling traffic flow and diverse computational approaches to solve and analyze
the associated traffic management problems. Dresner and Stone [5] use a multi-agent
systems approach, in which vehicles request a reservation from the intersection, which
in turn allocates each vehicle a time slot.Vehiclesmust then alter their speed to cross the
intersection during their reserved time.Yu andLaValle [17] draw a connection between
multi-agent path planning on collision-free unit-distance graphs and network flows.
Despite the popular interest in automated traffic systems, there has been relatively
little work on this problem from the perspective of algorithm design.

In an earlier paper [4], we considered the problem of scheduling the movements of
a collection of vehicles through a system of unregulated crossings. Our approach was
based on the idealized assumption that the motion of individual vehicles in the system
is controlled by a central server. A more practical approach is based on aggregating
vehicles into groups, or platoons, and planning the motion of these groups [11,16].

We consider the problem in this aggregated form, but from a periodic perspective.
Consider an urban transportation network consisting of a grid of horizontal and vertical
roads as laid out on a map. Each pair of horizontal and vertical roads meets at a unique
intersection controlled by a traffic light that alternates between horizontal and vertical
traffic, such that the pattern repeats over a time interval λ. We assume throughout that
λ has been discretized to a reasonably small integer value, say in terms of seconds or
tens of seconds.

More formally, we say that a traffic-light schedule is λ-periodic if it repeats every λ

time units. We consider a traffic management system of the foreseeable future where
the traffic light schedule is transmitted to the vehicles, which in turn may adjust
their speeds to avoid excessive waiting at intersections. While vehicles may turn at
intersections, the schedule is designed tominimize the delay of straight-moving traffic.

To motivate the connection with modular circulations, consider a four-sided city
block (see Fig. 1). Let a, b, c, and d denote the intersections, and let tab, tbc, tcd ,
tad denote the travel times between successive intersections along each road segment.
(We ignore practical issues such as acceleration.) If the road segment is oriented
counterclockwise around the block (as shown in our example), these travel times are
positive, and otherwise they are negative. Suppose that the traffic-light schedule is

t = 0

a b

cd

t = 0

t = tab

a b

cd

tab

tbc

t = tab + tbc

a b

cd

tbc

t = tab + tbc + tcd + tda

a b

cd

tcd

tda

(a) (b) (c) (d)

Fig. 1 Delay-free traffic-light schedule
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λ-periodic, and that at time t = ta the light at intersection a transitions so that the
eastbound traffic can move horizontally through the intersection (see Fig. 1a). In order
for these vehicles to proceed without delay through intersection b, this light must
transition from vertical to horizontal at time tb = ta + tab (see Fig. 1b).

Reasoning analogously, for the other intersections, it follows that the vertical-to-
horizontal transition times for intersections c and d are tc = tb + tbc and td = tc + tcd ,
respectively (see Fig. 1c). On returning to a (see Fig. 1d), we find that

ta ≡ ta + (tab + tbc + tcd + tda) (mod λ).

Thus, in order to achieve delay-freeflowaround the intersection in aλ-periodic context,
we must satisfy the constraint

tab + tbc + tcd + tda ≡ 0 (mod λ).

While traffic-light scheduling is essentially cyclic in nature, we acknowledge that
our model ignores many practical issues that arise in real traffic-management systems.
Nonetheless, it is noteworthy that even distilled to its simplest elements, this problem
is far from trivial. A natural question involves the choice of the integer parameter λ.
This models the length of the time period shared by the synchronized traffic lights, but
in what units is it expressed? Ideally, a traffic manager would like to have the greatest
degree of flexibility in choosing λ, since delays must be rounded to integer multiples
of λ. For example, if the traffic lights cycle every minute, then to achieve a resolution
of seconds in the delay values, we would set λ = 60. Because our approximation
bounds degrade as λ increases, it may be better to decrease the minimum time interval
to, say, 15 seconds. Then we could set λ = 60/15 = 4, resulting in more accurate
approximation bounds. The price paid is that delays would now be rounded up to
multiples of 15-second intervals.

In an earlier paper we considered the special case where λ = 2 and opposite sides
of the block have equal travel times [4]. We showed there that a simple alternating
strategy is optimal. It is not reasonable, however, to assume that all the blocks in the
city will satisfy this requirement. Furthermore, the assumption that λ = 2 does not
admit a more nuanced timing of the lights. In order to handle the more general case,
we introduce an (ideally small) nonnegative delay δi j ≥ 0 along each road segment
i j . This yields the new constraint

(tab + δab) + (tbc + δbc) + (tcd + δcd) + (tda + δda) ≡ 0 (mod λ),

or equivalently, if we define T = tab + tbc + tcd + tda to be the sum of (signed) travel
times of the road segments around this block, we have

δab + δbc + δcd + δda ≡ − T (mod λ). (1)

The upshot is that if vehicles travel at a reduced speed so that the transit time along
each of the road segments includes the associated delay, then the straight-line vehicular
traffic along each road need never pause or wait at any traffic signal. The objective is
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to minimize the sum of delay values over all the road segments in the network, which
we refer to as the total delay.

More formally, the transportation network is modeled as a set of horizontal and
vertical roads. This defines a directed grid graph whose vertices are the intersections,
whose edges are the road segments, and whose (bounded) faces are the blocks of the
city. For each pair of adjacent intersections i and j , let ti j denote the delay-free travel
time along this road segment. For each block u, define the total signed travel time
about u to be the sum of the travel times for each of the road segments bounding u,
where the travel time is counted positively if the segment is oriented counterclockwise
about u and negatively otherwise. Let T (u) denote this value modulo λ. A λ-periodic
traffic-light schedule assigns a delay to each road segment so that for each block, these
delays satisfy Eq. (1). The objective is to minimize the total delay, which is defined
to be the sum of delays over all the segments in the network.

To express this in the form of an instance of λ-CMD, let G = (V , E) denote the
directed dual of the graph, by which we mean that the vertex set V consists of the
city blocks, and there is a directed edge (u, v) ∈ E if the two blocks are incident to
a common road segment, and the direction of the road segment is counterclockwise
about u (and hence, clockwise about v). The demand of each vertex u, denoted d(u),
is set to T (u), and the weight of each edge is set to unity.

There remains one impediment to linking the λ-periodic traffic-light schedule and
the λ-CMD problems. The issue is that the delay associated with any road segment
(which may be as large as λ − 1) can be significantly larger than the time to traverse
the road segment. If so, the capacity of the road segment to hold the vehicles that are
waiting for the next signal may spill backwards and block the preceding intersection.
In order to deal with this issue without complicating our model, we introduce the
assumption that λ is smaller than the time to traverse any road segment. The link
between the two problems is presented in the following lemma.

Lemma 2.1 Given a transportation network and integer λ ≥ 2, let G be the associated
directed graph with vertex demands and edge weights as described above.

(i) If there exists a λ-periodic traffic-light schedule with total delay �, then there
exists a λ-CMD for G of cost �.

(ii) If there exists a λ-CMD for G of cost � and for all road segments i j , ti j ≥ λ, then
there exists a λ-periodic traffic-light schedule with total delay �.

Proof To prove (i), consider any λ-periodic traffic-light schedule. Define a flow on G
where the edge (u, v) carries flow equal to the delay on the associated road. The net
flow into a vertex u of G is equal to the sum of delays for the road segments that are
oriented clockwise about u and the sumof the negated delays for the road segments that
are oriented counterclockwise. Given any block with (counterclockwise) intersections
a, b, c, and d, the net flow into the associated node is −(δab + δbc + δcd + δda). By
the same reasoning behind Eq. (1), this sum is equivalent to T (u)modulo λ. It follows
directly that f is a λ-CMD. In both cases the cost is the sum of delays.

To prove (ii), let f denote any λ-CMD for the directed dual graph G. Fix any
intersection and set its transition time to 0 modulo λ. The transition times for the
remaining intersections can be set by a simple propagation process. In particular, if
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the transition time of an intersection i is known, then the transition time of an adjacent
intersection j is delayed relative to i (modulo λ) by δi j , which is the flow along the
associated dual edge. By Eq. (1) it follows that whenever this propagation loops back
to an intersection whose delay was set, the propagated transition time is equivalent
(modulo λ) with the original transition time. By the assumption that ti j ≥ λ, the
vehicles that entered this road segment during the last traffic-light cycle have sufficient
space1 that they can effectively “park” themselves within the road segment for δi j time
units until moving through the next intersection. ��

3 Preliminaries

In this section we present a few definitions and observations that will be used through-
out the paper. Given an instance G = (V , E) of the λ-CMD problem, consider any
subset V ′ ⊆ V . Let G ′ = (V ′, E ′) be the associated induced subgraph of G, and let
d(V ′) denote the sum of demands of all the nodes in V ′. We refer to E ′ as the internal
edges of this subgraph, and we refer to the edges of G that cross the cut (V ′, V \ V ′)
as the interface. Given such a subgraph and any flow f on G, define its internal flow
to be only the flow on the internal edges, and define the internal cost to be the cost
of the flow restricted to these edges. Define the interface flow and interface cost anal-
ogously for the interface edges. Define fin(V ′) to be the sum of flow values on the
interface edges that are directed into V ′, and define fout(V ′) analogously for outward
directed edges. The following lemma provides necessary and sufficient conditions for
the existence of a λ-CMD.

Lemma 3.1 Given an instance G = (V , E) of the λ-CMD problem:

(i) For any induced subgraph G ′ = (V ′, E ′) and any λ-CMD f , we have

fin(V
′) − fout(V

′) ≡ d(V ′) (mod λ).

(ii) If G is weakly connected, then a λ-CMD exists for G if and only if d(V ) ≡ 0
(mod λ).

Proof Assertion (i) follows by applying standard results on circulations to the modular
context. The “only if” part of assertion (ii) is a special case of (i), where G ′ = G.
To see the “if” part of assertion (ii), consider any path (ignoring the edge directions)
between two vertices u and v of nonzero demand in G. For any x , 0 ≤ x < λ, we can
push x units of flow from u to v by pushing x units of flow along each forward-directed
edge of the path and λ − x units of flow along each backward-directed edge. (Each
intermediate vertex has a net incoming flow of either 0, λ or −λ, depending on the

1 We are using the term “space” abstractly. To relate space and time,wewould need to introduce amaximum
speed limit, call it σ . Assuming vehicles move at their maximum speed, the total length of a vehicle platoon
that can pass through any intersection in time λ is σλ. To move these vehicles to the next intersection in
time ti j at full speed, the road segment between these intersections is of length σ ti j . Since ti j ≥ λ, we
have σ ti j ≥ σλ, and, irrespective of the choice of σ , it follows that there is sufficient space to park these
vehicles, whatever their actual sizes may be.
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orientation of the incident edges.) By repeating this, we can satisfy the demands of all
the vertices in the graph. ��

It follows from this lemma that the λ-CMD instance associatedwith any traffic-light
scheduling problem has a solution. The reason is that each edge (u, v) contributes its
travel time tuv positively to d(u) and negatively to d(v), and therefore the sum of
demands over all the vertices of the network is zero, irrespective of the travel times.

4 Polynomial Time Solution to 2-CMD

In this section we show that 2-CMD, which we also call binary CMD, can be solved
in polynomial time by a reduction to minimum-cost matching in general graphs. Intu-
itively, the binary case is simpler because the edge directions are not significant. If
a vertex is incident to an even number of flow-carrying edges (whether directed into
or out of this vertex), then the net flow into this vertex modulo λ is zero, and other-
wise it is one. Thus, solving the problem reduces to computing a minimum-cost set
of paths that connect each pair of vertices of nonzero demand, which is essentially
a minimum-cost perfect matching in a complete graph whose vertex set consists of
the subset vertices of nonzero demand and whose edge weights are distances between
vertices ignoring edge directions. The remainder of this section is devoted to providing
a formal justification of this intuition.

Recall G = (V , E) is a directed graph, and d(v) denotes the demand of vertex
v. Since λ = 2, for each v ∈ V , we have d(v) ∈ {0, 1}. Let G ′ = (V , E ′) denote
the graph on the same vertices as G but with directions removed from all the edges.
We may assume that G ′ is connected, for otherwise it suffices to solve the problem
independently on each connected component of G ′ and combine the results. We set
the weight of each edge of G ′ to the weight of the corresponding edge of G. If there
are two oppositely directed edges joining the same pair of vertices, the weight is set
to the minimum of the two.

Let U = U (G) denote the subset of vertices of V whose demand values are equal
to 1. By Lemma 3.1(ii), we may assume that d(V ) ≡ 0 (mod λ). Therefore, d(V )

is even, which implies that |U | is also even. For each u, v ∈ U , let π(u, v) denote
the shortest weight path between them in G ′, and let wt(π(u, v)) denote this weight.
Define Ĝ = (U , Ê) to be a complete, undirected graph on the vertex set U , where
for each u, v ∈ U , the weight of this edge is wt(π(u, v)). (This is well defined by
our assumption that G ′ is connected.) Since Ĝ is complete and has an even number
of vertices, it has a perfect matching. The reduction of 2-CMD to the minimum-cost
perfect matching problem is implied by the following lemma.

Lemma 4.1 Given an instance G = (V , E) of the 2-CMD problem, the minimum cost
of any 2-CMD for G is equal to the minimum cost of a perfect matching in Ĝ.

Proof We begin with the assertion that any 2-CMD f for G can be mapped to a
collection of paths in the undirected graph G ′ corresponding to edges of f that carry
nonzero flow, such that each u ∈ U is incident to at least one such path. This is well
known when dealing with traditional flows, but it does not generally hold for CMDs
when λ > 2. We will show that it holds in the binary case.
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To establish the assertion, let f denote a 2-CMD for G. Each edge of G carries
either a flow of 0 or 1. Observe that the net flow into each vertex of U (respectively,
V \U ) is odd (respectively, even). Consider the following process, which will output a
collection of paths while gradually reducing f to an empty flow. Start with any vertex
v that is incident to an odd number of flow-carrying edges. Compute any maximal
path in G ′ by following edges that carry nonzero flow. (The edge directions are not
important, because any incident edge that carries flow toggles the net flow’s parity
between even and odd.) Clearly, such a path must terminate at a different vertex u
that is also incident to an odd number of flow-carrying edges, and hence is also in U .
Output this path π(u, v) from v to u and modify f by setting the flow values of the
edges along this path to 0.

Observe that the resulting set � of paths is incident to every vertex of U , and their
total cost is equal to the cost of f . Also, the sum of edge weights along each path
between vertices u and v is at most the cost of the shortest path between them, that is,
wt(π(u, v)).

To establish the lemma, we apply the above path-reduction procedure. Each path
between two vertices u and v corresponds to an edge of Ĝ. After reducing the flow
values along the path between such a pair of vertices, these two vertices are now
incident to an even number of edges carrying nonzero flow. Thus, each vertex of U
will appear in exactly one of the output paths, implying that the final set of paths
defines a perfect matching in Ĝ (whose vertex set we recall isU ). We have cost( f ) =∑

π(u,v)∈� wt(π(u, v)), which is the cost of the perfect matching.
Conversely, given any perfect matching in Ĝ, we can generate a 2-CMD by pushing

a single unit of flow along the edges of the shortest path between u and v, for each
edge (u, v) of the matching. This is a valid 2-CMD, since each vertex ofU is incident
to an odd number of edges carrying one unit of flow, and each vertex of V \ U is
incident to an even number of edges carrying one unit of flow. Note that if paths share
common edges, then the total flow value along this edge may exceed one, but if so it
can be reduced to either 0 or 1. It follows that the cost of the 2-CMD is no larger than
the cost of the matching. ��

Our approach is similar to the classical solution to the Chinese-Postman Problem by
Edmonds and Johnson [6]. Vertices of odd demand in our problem play the same role
as vertices of odd degree in theirs. Since Ĝ is dense, a minimum-cost perfect matching
can be constructed in O(|U |3) time. The graph can be computed in O(n3) time, where
n = |V |, by applying the Floyd–Warshall algorithm for computing shortest paths [3].
Thus, the overall running time is O(n3).

Theorem 4.1 It is possible to solve the 2-CMD problem in O(n3) time on any instance
G = (V , E), where n = |V |.

5 Hardness of �-CMD

In this section, we present the following hardness result for λ-CMD.

Theorem 5.1 For λ ≥ 3, the λ-CMD problem is NP-hard.
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The reduction is frompositive 1-in-3-SAT [9]. For the sake of brevity and simplicity,
we show the proof for the case λ = 3 here, but the method easily generalizes (as
described in “Appendix 1”). Let F denote a boolean formula in 3-CNF, where each
literal is in positive form. Throughout, for α ∈ {0, 1, . . . , λ − 1}, we use the term
α-vertex to denote a vertex whose demand is α. The reduction involves two principal
components, a variable gadget which associates truth values with the variables of F
and a clause gadget which enforces the condition that exactly one variable in each
clause is assigned the value True.

5.1 Variable Gadget

Before discussing the general gadget, we describe a fundamental building block from
which all variables will be constructed. The block consists of six vertices, three 1-
vertices and three (λ − 1)-vertices (i.e., 2-vertices), connected together with edges as
shown in Fig. 2a. Edges connecting 1-vertices have weight wt(u, v) = 1.5, while all
other edges are of weight wt(u, v) = 1.

If a flow of 1 is sent from each 2-vertex to its connected 1-vertex, the 2-vertices
overflow and all demands are satisfied with cost( f ) = 3 (see Fig. 2b). This flow, in
which there is no flow across the interface edges, represents a logical value of False.

If instead a flow of 1 is sent across the interface edges, then the demands of the
2-vertices are satisfied. A flow of 1 across each edge originating at the central 1-vertex
will cause it to overflow and will satisfy each of the connected 1-vertices. This flow,
in which each interface edge carries a flow of 1, represents a logical value of True and
again has cost( f ) = 3 (see Fig. 2c).

If every interface edge of a variable gadget carries the same flow and that flow
is either 0 or 1, that variable is said to be interface-consistent. If all variables are
consistent for a given flow, then that flow is said to be variable-consistent. Notice that
both logical values above are realized via interface-consistent flows.

Lemma 5.1 Given a fundamental block, a satisfying flow has cost ≤ 3 if and only if
that flow is interface-consistent.

TrueFalse

(a) (b)

1.5 1.5 1.5 1.5

2 2 2 2 2

1 11 1 11

1 1 1

1 1 1

1 1

2

1.5 1.5

2 2 2

1 11

(c)

Fig. 2 a The fundamental building block used to build variable gadgets. Interface edges are dashed gray
segments. b, c CMDs representing the assignment of False and True values, respectively, with the flow
values in boxes
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1 11

1 112 2 2

2 2

1 1

1

11
1 1

(a) (b)

1 11

1 112 2

2 2

2

Fig. 3 Two fundamental blocks connected via a shared 2-vertex, with figure b showing a flow that is
satisfying but not interface-consistent

Proof Each 2-vertex can only be satisfied by: (1) sending a flow of 1 across one of its
edges or (2) sending a flow of 2 across both of its edges (in both cases the vertex’s
demand overflows).

In the second case, the 2-vertex sends a flow of 2 to its neighboring 1-vertex. As
per Lemma 3.1(i), that vertex now requires a flow of 2 across its other edge in order
to have its demand satisfied. Together these flows come at a cost of 5 (one of these
edges has a weight of 1.5), therefor no 2-vertex may be satisfied by a flow greater than
1 without a cost greater than 3.

There exists a satisfying flow for a fundamental block if and only if the total flow
across its interface edges is equivalent to 0 (mod λ) (see Lemma 3.1). Given this and
the fact that no single interface flow may equal 2, the flows across the interface edges
must either all be 0 or all be 1, i.e., the overall flow must be interface-consistent for it
to be a satisfying flow. ��

As variables may appear in multiple clauses, we need a mechanism by which
existing variables can be expanded. For this, we create an expansion module, any
number of which can be added to a variable so that there are three interface edges for
each clause in which that variable appears.

To understand how this module functions, let us first look at the case when two
fundamental blocks are connected together. This connection occurs through a shared
2-vertex, so that what was an interface edge for one block becomes the connection
between a 2-vertex and 1-vertex in the other block (see Fig. 3). Recall that the value
assignment of a variable is determined by the direction of flow from the 2-vertices,
with flow along the interface representing True and internal flow (i.e., flow to the
connected 1-vertices) representing False. Because the outgoing edges of the shared
2-vertex are simultaneously an interface edge of one block and an internal edge of the
other, pushing a flow across either edge will assign opposing values to the blocks.

Knowing this, the module is constructed as a double-negative, ensuring that it is
assigned the same value as the variable it extends. A fundamental block is used as
a hub, and to this hub we attach two more fundamental blocks (see Fig. 4). When
attached to a variable, this module creates four new interface edges and consumes
one, thus extending the variable by three interface edges.

While the structure of the fundamental blocks is as described above, the weighting
must be adjusted to maintain equal costs between the True and False states. Rather
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1 1

1 112 2 2

2

1 11

2 2
1

1

1

1 11

2 2

2

2

1 1

1

2

2 2

1 11

2 2

(a) (b)

1 11

2 2 2

1
1.5 1. 15 .5 1.5

1.5 1.51.51.5

Fig. 4 a A fundamental block with a single expansion module attached. b The same structure rearranged
to emphasize the two clause outputs, each with three interface edges

1

1

1

1 11

2 2

2

2

1 1

1

2

2

2

1 11

2 2

1.5

1.5

1.5

1.5

1 11

2

1 1

1

2

2 2

1 11

2

1.5

1.5

1 11

2

1 1

1

2

2

2

1 11

2 2

1.5

1.5

1 11

2

1 1

1

2

2

2

1 11

2

1.5

1.5

2 2

Fig. 5 An example of a large variable gadget with five clause outputs

than each fundamental block having two edges of weight 1.5, only the rightmost block
in the expansion module has such edges; all others are of weight 1. In this way, the
minimal cost of a consistent satisfying flow across the module is 8, regardless of the
value assigned to the variable. This is easily verified by assigning a truth value to the
gadget (fixing an interface-consistent flow on the interface edges of 0 or 1) and then
traversing the structure, satisfying the demand in each vertex by assigning flow to its
unused edge.

Given this, Lemma 5.1, and the fact that the expansion module is constructed from
fundamental blocks, we have the following:

Lemma 5.2 Given an expansion module, there exists an interface-consistent flow of
internal cost 8 (in either the True or False cases), and any other satisfying flow has
a strictly larger internal cost.

To construct a gadget for a variable vi , appearing in c(vi ) clauses, begin with a
fundamental block and connect c(vi ) − 1 expansion modules to it (see Fig. 5). Doing
so provides c(vi )λ interface edges and yields the following result:

Lemma 5.3 Given a variable gadget, there exists an interface-consistent flow of inter-
nal cost 3+ 8[c(vi ) − 1] (in either the True or False cases), and any other satisfying
flow has a strictly larger internal cost.

5.2 Clause Gadget

The basis for the clause gadget is a single 1-vertex with three incoming edges, one
for each literal. These edges have a weight wt(u, v) = γ and are connected to the
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Fig. 6 A full clause gadget, with three inputs from each of three literals

appropriate variables as their outgoing interface edges. If a single literal is True, one
of these edges will carry a flow of 1, satisfying the demand of the clause vertex. If
more literals are True, the demand underflows and the vertex is left unsatisfied. It is
possible to satisfy the vertex by creating flows on these edges greater than 1, but such
flows can be made cost-prohibitive by setting the edge weights γ sufficiently high.

Recall that each variable gadget produces λ copies of its respective variable (three
interface edges in this example) per clause in which it appears. Because of this, the
clause gadget must also be created in triplicate. Every clause consists of three 1-
vertices, eachwith an incoming edge from its three literals (see Fig. 6). Theirweighting
and behavior are as described above.

Since there are no internal edges in the clause gadgets, they do not contribute to the
cost of the flow (but their interface edges will).

5.3 Final Construction

Each variable in F is represented by a fundamental block connected to c(vi ) − 1
expansion modules, creating c(vi )λ outputs. Thus, λ outputs are linked to each of
the appropriate clause gadgets (see Fig. 7). The size of the variable gadget is a linear
function of the number of clauses in which that variable appears and can thus be
constructed in polynomial time.

If F is satisfiable, then a 3-CMD exists that is variable-consistent. In this case, each
fundamental block incurs a cost of 3, and each expansion module incurs an additional
cost of 8 for a flow representing a consistent truth value across its interface and the
interfaces of the modules/fundamental block to which it is attached, as per Lemma
5.2.

For each clause, create λ 1-vertices, each connected to the clause’s three literals
by incoming edges. As there are no edges between these vertices, there is no flow
possible within the clause gadget, resulting in an internal cost of 0. The size of the
clause gadget is constant.

Finally, the flow on the edges between the variable gadgets and clause gadgets has
yet to be counted as they are interface edges for both gadgets. Each clause gadget
contains λ 1-vertices, with each receiving a flow of 1 across edges of weight γ . Thus,
these add a cost of 3|C |γ , where |C | is the number of clauses in F .
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Fig. 7 An example of a reduction from the formula F = (x ∨ y ∨ z) ∧ (z ∨ a ∨ b). Note that the weights
have been removed for legibility

If F is not satisfiable, then some set of variables must have inconsistent outputs
in order to create a valid CMD. As shown in Lemma 5.1, these inconsistencies will
always lead to a strictly greater cost. Thus:

Lemma 5.4 Given a positive boolean formula F in 3-CNF, in polynomial time it is
possible to construct an instance of 3-CMD that has a satisfying flow with

cost( f ) ≤
∑

vi∈V
(3 + 8[c(vi ) − 1] + 3|C |γ )

if and only if F is 1-in-3 satisfiable.

6 Approximation Algorithm

In this section, we present a 4(λ − 1)-factor approximation to the λ-CMD problem
for λ ≥ 2. Before presenting the algorithm, we introduce some terminology. Consider
an instance G = (V , E) of the λ-CMD problem, with vertex demands d. Let G ′ =
(V , E ′) be (as defined in Sect. 4) the undirected version of G. Let us assume that G ′
is connected. LetU = U (G) denote the subset of vertices of V whose demand values
are nonzero. Define SMT(U ) to be a Steiner minimal tree in G ′ whose terminal set
is U (that is, a connected subgraph of G ′ of minimum weight that contains all the
vertices of U ).

As in Sect. 4, define Ĝ = (U , Ê) to be the complete, undirected graph over the
vertex set U , where for each u, v ∈ U , the weight of this edge is the weight of a
minimum weight path between u and v in G ′. Given any U ⊆ V , letMST(U ) denote
any minimum spanning tree on the subgraph of G ′ induced on U . From standard
results on Steiner and minimum spanning trees we have the following.
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Lemma 6.1 For any U ⊆ V , wt(MST(U )) ≤ 2 · wt(SMT(U )).

Define a balanced partition to be a partition {U1, . . . ,Uk} of U such that for 1 ≤
i ≤ k, the total demand within Ui (that is, d(Ui )) is equivalent to zero modulo λ.
By Lemma 3.1(ii), we may assume that d(V ) ≡ 0 (mod λ), and so there is always a
trivial partition, namely {V } itself.Define cost(Ui ) to be cost(SMT(Ui )), and define the
cost of a balanced partition to be the sum of costs over its components. A minimum
balanced partition for G is a balanced partition of minimum cost. The following
lemma establishes the connection between balanced partitions and minimummodular
circulations.

Lemma 6.2 Consider an instance G = (V , E) of λ-CMD. Let 
 = (U1, . . . ,Uk)

denote a minimum balanced partition of G, as defined above, and let f denote any
minimum cost λ-CMD for G. Then cost(
) ≤ | f | ≤ (λ − 1) · cost(
).

Proof Given any λ-CMD f for G, let E ′
f ⊆ E ′ denote the corresponding edges of

the undirected graph G ′ that carry nonzero flow. This set of edges induces a set of
connected components such that each vertex ofU lies within one of these components.
These components defines a partition of U . By Lemma 3.1(i), the sum of demands
within each connected component is amultiple ofλ, which implies that these connected
components define a balanced partition for G, which we call 
 f . Since each edge that
carries flow carries at least one unit of flow, it follows that | f | ≥ cost(
 f ). This
establishes the lower bound on | f |.

In order to prove the upper bound, we will show how to map 
 into a λ-CMD that
satisfies the desired bound. Our construction builds a separate flow fi for each subset
Ui , and the final flow is simply the sum of all these flows. Let Ti = SMT(Ui ). It will
simplify matters to first describe the construction in terms of the undirected graph G ′,
and then modify it to apply to G.

Let us root Ti at any one of the vertices ofUi . The construction operates in a bottom-
upmanner by performing a post-order traversal of Ti . For each vertex u visited, let f (u)

denote the net flow into u from its children (or zero if u is a leaf). If d(u) − f (u) <

0) (this is a net-supply vertex) we direct (d(u) − f (u)) mod λ units of flow from
u to its parent, and if d(u) − f (u) > 0 (this is a net-demand vertex) we direct
(d(u) − f (u)) mod λ units of flow from its parent to u. Because the sum of demands
within this component is a multiple of λ, the net flow into the root r must equal d(r)
modulo λ. It is easy to see that the net flow into every vertex of Ti is equivalent to
zero modulo λ, and thus it is a valid λ-CMD. It follows directly that by applying the
process to every component of
 we obtain a λ-CMD for G ′, which we denote by f ′


 .
Because each edge carries a flow of at most λ − 1, we have | f ′


 | ≤ (λ − 1) · cost(
).
We can convert f ′


 to a λ-CMD for the directed graph G as follows. Consider any
edge (u, v) of any subtree Ti where u is the child and v is the parent. If the direction of
this edge in G matches the direction of the flow, then there is no change. Otherwise,
we replace the flow value of x on this edge with the flow value of λ − x , essentially
negating the value of the flow. It is easy to see that the resulting flow satisfies the
modular balance constraints at each vertex, and therefore the result is a λ-CMD for
G. By the same reasoning as above, | f
 | ≤ (λ − 1) · cost(
). ��
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By the above lemma, it suffices to compute a balanced partition for G of low cost.
We will present a simple approximation algorithm that outputs a balanced partition
whose cost is within a factor of 4 of the optimum.

The construction begins with the metric closure Ĝ defined above. In a manner
similar to Kruskal’s algorithm, we sort the edges of Ĝ in increasing order, and start
with each vertex of Ĝ in a separate component. All these components are labeled as
active. We process the edges one by one. Letting (u, v) denote the next edge being
processed, if u and v are in distinct components, and both components are active, we
merge these components into a single component. If the sum of the demands of the
vertices within this component is equivalent to zero modulo λ, we label the resulting
component as finished, and output its set of vertices. Because the total sum of demands
of all the nodes is equivalent to zero modulo λ, it follows that every vertex is placed
within a finished component, and therefore the algorithm produces a balanced partition
of Ĝ (and by extension, a balanced partition of G).

This algorithm has the same running time as Kruskal’s algorithm. (Observe that we
can associate each component with its sum of demands, thus enabling us to determine
the sum of merged components in constant time.) The following lemma establishes
the approximation factor for this construction.

Lemma 6.3 Let 
 ′ denote the balanced partition generated by the above algorithm,
and let 
 denote the optimum balanced partition. Then cost(
 ′) ≤ 4 · cost(
).

Proof We begin by modifying the optimum balanced partition 
 into a form that will
be easier to analyze. Let {U1, . . . ,Uk} denote the subsets of 
, and for 1 ≤ i ≤ k,
let Ti denote the minimum spanning trees of the induced subgraph of Ui within the
metric closure Ĝ. By standard results on Steiner trees, it follows that cost(Ti ) ≤
2 · cost(Ui ). Henceforth, we will measure costs in terms of the minimum spanning
trees over the components. In particular, define cost′(
) = ∑

i cost(Ti ). We have
cost′(
) ≤ 2 ·cost(
). Because the cost of the minimum Steiner tree does not exceed
the cost of the minimum spanning tree, we have cost(
 ′) ≤ cost′(
 ′).

For each pair of components of Ui ,Uj ∈ 
, let wi and w j denote the maximum
weights of any edges of Ti and Tj , respectively. If there exists an edge of Ĝ that
connects two vertices, one in Ui and one in Uj , such that the weight of this edge
is not greater than min(wi , w j ), then merge the vertices of Ui and Uj into a single
component. Repeat this process until there is no inter-component edge that satisfies
this property. Clearly, the resulting set of components, which we denote by 
 ′′, is a
balanced partition.

We claim that cost′(
 ′′) ≤ 2 · cost′(
). This follows from a simple charging
argument. Let us consider the smallestweight edge that satisfies themerging condition.
Each of the two componentsUi andUj that are connected by this edge each have edges
with weights wi and w j , respectively, both of which are as large as the connecting
edge. We add this connecting edge and charge it to the smaller of wi and w j . The
other edge remains to be charged for future merges. In this manner, every time two
components are merged, an edge from one of the components pays for the newly
added connecting edge, and the other remains for future charges. Therefore, only the
original edges are charged, and no edge is charged more than once. It follows that
cost′(
 ′′) ≤ 2 · cost′(
), as desired.
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We assert that 
 ′ is a refinement of 
 ′′, meaning that each set U ′
i of 
 ′ is a (not

necessarily proper) subset of some set U ′′
j of 
 ′′. We prove this by contradiction.

Suppose that there was an edge (u, v) such that u and v are in the same subset 
 ′, but
they are in different components of
 ′′. Let us assume that (u, v) is a minimumweight
edge with this property. By definition of 
 ′′, the weight of (u, v) is strictly smaller
than the weights of all the edges of either U ′′

i or U ′′
j (possibly both). Assume without

loss of generality that U ′′
i satisfies this property. It follows that at the time that edge

(u, v) is considered by our algorithm, all the edges ofMST(U ′′
i ) have been considered,

which implies that our algorithm has discovered all the edges of this spanning tree.
Since (u, v) is the smallest inter-component edge, there can be no other vertices that
are part of this component. Since 
 ′′ is a balanced partition, the sum of the vertices
in this component sum to zero modulo λ, which implies that this component would
have been labeled as finished by our algorithm, contradicting the hypothesis that the
edge (u, v) was considered for insertion by our algorithm.

By the above assertion, each component of 
 ′ is a subset of some component of

 ′′, implying that cost′(
 ′) ≤ cost′(
 ′′). In conclusion, we have

cost(
 ′) ≤ cost′(
 ′) ≤ cost′(
 ′′) ≤ 2 · cost′(
) ≤ 4 · cost(
),

as desired. ��
Combining Lemmas 6.2 and 6.3(ii), it follows that our algorithm achieves an

approximation factor of 4(λ − 1). While obtaining the best running time has not
been a focus of this work, it is easy to see that this procedure runs in polynomial time.
Let n = |V |. The graph Ĝ can be computed in O(n3) time by the Floyd–Warshall
algorithm [3]. The Kruskal-like algorithm for computing the balanced partition can be
performed in O(n2 log n) time, as can the algorithm of Lemma 6.2. Thus, the overall
running time is O(n3).

Theorem 6.1 Given an instance G = (V , E) of the λ-CMD problem for λ ≥ 2, it is
possible to compute a 4(λ − 1)-approximation in time O(n3), where n = |V |.

7 Conclusion

In this paper we have introduced a variant of the well-known circulation problem,
referred to as the λ-CMD problem. Given a directed graph G and vertex demands
d ∈ Z (mod λ), the λ-CMD problem is that of computing a minimum-cost flow that
satisfies the modular demands of every vertex. A modular demand d is satisfied by an
inbound flow of d or an outbound flow of λ − d.

We have shown that 2-CMD can be solved exactly in polynomial time as, thanks to
the nature of modular demands, edge direction is irrelevant and finding a minimum-
cost satisfying flow is equivalent to finding a minimum-cost perfect matching between
vertices (see Sect. 4 for details).

Additionally, by way of a reduction from positive 1-in-3-SAT, we showed that λ-
CMD is NP-hard for λ ≥ 3. This reduction is first illustrated with an example of a
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reduction to 3-CMD (see Sect. 5) and later generalized for larger values of λ through
a simple extension of the gadgets used in the λ = 3 example (see “Appendix 1”).

Our final result is a polynomial time 4(λ − 1)-approximation to λ-CMD. This
approximation employs aKruskal-like algorithm to build balanced neighborhoods that
can satisfy their demandswithout costly external flows. To do so, however, requires that
the edge directions are ignored, which induces a λ factor penalty to the approximation
(see Sect. 6).

In future work we hope to do away with this limitation and decrease the approxi-
mation factor, perhaps removing the λ factor entirely. Additionally, the reduction used
in the hardness proof of λ-CMD is for generalized directed graphs, meaning that these
graphs are not necessarily planar. While studies of actual road networks have shown
that crossings are not uncommon [8], in many urban road networks the fraction of
crossings to total intersections is very small [2]. It would therefore be of interest to
know whether the λ-CMD problem is hard even for planar graphs. Although there
are planar variants of satisfiability, which make use of cross-over gadgets to eliminate
non-planar elements (see, e.g., [13]), we have been unable to discover such a gadget in
the λ-CMD context. We pose as an open problem whether planar λ-CMD is NP-hard.

Finally, we plan to extend this work by generalizing it to more robust models of
traffic flow, including but not limited to multi-lane roads, bidirectional streets, mixed
blocks with differing numbers of sides (particularly a mix of even- and odd-numbered
sides as this disrupts the periodic patterns), and vehicles that exhibit more complex
behaviors such as turning at intersections, changing lanes, etc.

Appendix A: NP-hardness Generalization

Fundamental blocks are constructed in the same manner as described in the λ = 3
example in Sect. 5.1, but for completeness, we describe themhere in their general form.
A fundamental block begins with λ 1-vertices, connected as a star graph (i.e., a central
vertex connected to each of the remaining vertices) with edges directed outward. Each
1-vertex is also connected to a (λ − 1)-vertex via an incoming edge. Finally, these
(λ − 1)-vertices each have an outgoing interface edge (Fig. 8).

The expansion module, too, remains largely unchanged. It consists of a central
fundamental block with λ interface edges. A fundamental block is then connected
to all but one of these edges, with the remaining edge reserved for connecting to
the existing variable gadget. For each expansion module added to a variable gadget,
(λ−1)2−1 interface edges are added (one interface edge is consumedwhen connecting
to the variable gadget, hence the −1). See Fig. 9. Just as before, we must adjust the
weights of a small subset of edges so that True and False assignments incur the same
cost. To do so, arbitrarily select a fundamental block that is not the hub (i.e., not the
fundamental blockwhich connects to the existing variable gadget) and set the outgoing
edges from its central 1-vertex to a weight of 2λ−3

λ−1 .
Recall that the variable gadget described in Sect. 5.1 creates c(vi )λ interface edges.

In truth, the fundamental block creates λ interface edges while each of the c(vi ) − 1
expansion modules add (λ − 1)2 − 1 interface edges. When λ = 3, these formulae
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Fig. 8 Fundamental blocks with a λ = 4 and b λ = 6
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Fig. 9 Expansion modules built from fundamental blocks (FB) with a λ = 4 and b λ = 6. Edges between
fundamental blocks are represented with a disc and no direction as a reminder that the blocks are connected
via a shared (λ − 1)-vertex

are equivalent, each variable has c(vi )λ interface edges, and each of the c(vi ) clause
gadgets will connect to λ interface edges.

When λ > 3, the variable gadgets will have λ+[c(vi ) − 1]
[
(λ − 1)2 − 1

]
interface

edges.As this is not evenly divisible by c(vi ), connecting to the clause gadgets becomes
problematic. To correct for this, a modified expansion module, called a seed module,
is used to start each variable gadget rather than a fundamental block. Rather than
connecting to an existing variable gadget, the edge that was previously reserved for
this connection is instead attached to one of the existing interface edges (recall that
in actuality a (λ − 1)-vertex is being shared, not that two edges are being connected
directly). By doing so, we now have a seedmodule that has (λ−1)2−1 interface edges
(Fig. 10) and, when used in conjunction with unaltered expansion modules, creates a
variable gadget with c(vi )

[
(λ − 1)2 − 1

]
interface edges.

Clause gadgets are constructed as described in Sect. 5.2, with the caveat that they
require (λ − 1)2 − 1 vertices rather than λ. Each vertex will still only have three
incoming edges, as each clause will only ever have three literals, and a demand of 1.
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Fig. 10 Seed modules for creating variable gadgets with a λ = 4 and b λ = 6

Despite a small increase in the size of each gadget, the reduction can still be done
in polynomial time.

Finally, the cost threshold must be generalized in Lemma 5.4. In the general form,
if F is satisfiable there will be a satisfying flow with

cost( f ) ≤
∑

vi∈V
[(λ2 − 1)c(vi ) + λ|C |γ ]
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