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Abstract. We study the iterated version of Travelers Dilemma (TD).
TD is a two-player, non-zero sum game that offers plenty of incentives for
cooperation. Our goal is to gain deeper understanding of iterated two-
player games whose structures are far from zero-sum. Our experimental
study and analysis of Iterated TD is based on a round-robin tournament
we have recently designed, implemented and analyzed. Our round-robin
tournament involves 38 distinct participating strategies, and is motivated
by the seminal work by Axelrod et al. on iterated Prisoners Dilemma.
In this paper, we first motivate and define the strategies competing in
our tournament, followed by a summary of the tournament results with
respect to individual strategies. We then extend the comparison-and-
contrast of the relative performances of different individual strategies
in the tournament, and carefully analyze how groups of closely related
strategies perform when each such group is viewed as a “team”. We
draw some interesting lessons from the analyses of individual and team
performances, and outline our ongoing and future work.

Keywords: game theory, non-zero-sum games, travelers dilemma, iter-
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1 Introduction

Game theory provides mathematical foundations for modeling interactions among,
in general, self-interested rational agents that may need to combine competition
and cooperation with each other in order to meet their individual objectives
[17, 19, 23]. An example of such interactions is the iterated Prisoner’s Dilemma
(PD) [1, 2], a classical two-person non-zero-sum game that has been extensively
studied by psychologists, sociologists, economists, political scientists, applied
mathematicians and computer scientists.

In this paper, we study an interesting and rather complex 2-player non-zero
sum game, the (Iterated) Traveler’s Dilemma [7, 8, 12, 16]. In TD, each player
has a large number of possible actions or moves. In the iterated context, many
possible actions per round imply, for games of many rounds, an astronomic num-
ber of possible strategies overall. We are interested in the Iterated TD because
its structure defies the usual prescriptions of the classical game theory insofar



as what constitutes “optimal” play. We first define Travelers Dilemma, motivate
its relevance and summarize most relevant prior art. We then pursue a detailed
analysis of the “baseline” variant of the game that is based on a round-robin,
many-round tournament that we have recently designed, implemented and run.
In our analysis, we first summarize our main findings on the relative perfor-
mances of various individual strategies with respect to the “bottom line” metric
(which is, essentially, appropriately normalized dollar amount). We then focus
on “team performance” of several selected groups of closely related strategies.
We draw a number of interesting conclusions based on our extensive experimen-
tation and analyzes of the individual and team performances. Finally, we outline
some promising ways forward in this ongoing quest of gaining deeper insights
into Iterated TD and other “far-from-zero-sum” iterated two-person games.

2 Traveler’s Dilemma

Traveler’s Dilemma was originally introduced in [4]. The motivation behind the
game was to show the limitations of classical game theory [14], and in particular
the notions of individual rationality that stem from game-theoretic notions of
“optimal play” based on Nash equilibria [4, 5, 23]. The original version of TD,
which we will treat as the “default” variant of this game, is defined as follows:

An airline loses two suitcases belonging to two different travelers. Both suit-
cases happen to be identical and contain identical items. The airline is liable for
a mazimum of $100 per suitcase. The two travelers are separated so that they
cannot communicate with each other, and asked to declare the value of their lost
suitcase and write down (i.e., bid) a value between $2 and $100. If both claim
the same value, the airline will reimburse each traveler the declared amount.
However, if one traveler declares a smaller value than the other, this smaller
number will be taken as the true dollar valuation, and each traveler will receive
that amount along with a bonus/malus: $2 extra will be paid to the traveler who
declared the lower value and a $2 deduction will be taken from the person who
bid the higher amount. So, what value should a rational traveler (who wants to
mazximize the amount she is reimbursed) declare?

A tacit assumption in the default formulation of TD is that the bids have
to be integers. That is, the bid granularity is $1, as this amount is the smallest
possible difference between two non-equal bids.

This default TD game has some very interesting properties. The game’s
unique Nash equilibrium (NE), the action pair (p, q) = ($2, $2), is actually rather
bad for both players, under the usual assumption that the level of the players’
well-being is proportional to the dollar amount they individually receive. The
choice of actions corresponding to NE results in a very low payoff for each player.
The NE actions also minimize social welfare, which for us is simply the sum of
the two players’ individual payoffs. However, it has been argued [4, 8, 11] that
a perfectly rational player, according to classical game theory, would “reason
through” and converge to choosing the lowest possible value, $2. Given that the
TD game is symmetric, each player would reason along the same lines and, once



selecting $2, would not deviate from it (since unilaterally deviating from a Nash
equilibrium presumably can be expected to result in decreasing one’s own pay-
off). In contrast, the non-equilibrium pair of strategies ($100,$100) results in
each player earning $100, very near the best possible individual payoff for each
player. Hence, the early studies of TD concluded that this game demonstrates
a woeful inadequacy of the classical game theory, based on Nash (or similar
notions of) equilibria [5]. Interestingly, it has been experimentally shown that
humans (both game theory experts and laymen) tend to play far from the TD’s
only equilibrium, at or close to the maximum possible bid, and therefore fare
much better than if they followed the classical game-theoretic approach [7].

We note that adopting one of the alternative notions of game equilibrium
found in the “mainstream” literature does not appear to help, either. For ex-
ample, it is argued in [12] that the action pair ($2,$2) is also the game’s only
evolutionary equilibrium. Similarly, seeking sub-game perfect equilibria (SGPE)
[15] of Tterated TD is also not very promising: the set of a game’s SGPEs is a
subset of that game’s full set of Nash equilibria in the mixed strategies. We also
note that Iterated TD is structurally rather different from the Centipede Game
[15] (a game brought to our attention by anonymous reviewers of an earlier paper
of ours on ITD); in particular, the Centipede Game has multiple pure strategy
Nash Equilibria (NE) and infinitely many NE in mixed strategies, whereas our
game has a unique (pure strategy) NE and no additional mixed strategy NE.

We study the generalized iterated TD in [20]; there, the impact of the ratio
between the bonus and the bid granularity on the game structure (the Nash
equilibria, the Pareto optimal strategy pairs etc.) is studied in detail. For exper-
imental studies on how human behavior changes with a change in the bonus, see
Capra et al. [8] and Goeree and Holt [11].

3 The iterated travelers dilemma tournament

Our Iterated Traveler’s Dilemma tournament has been inspired by, and is in form
similar to, Axelrod’s Iterated Prisoner’s Dilemma tournament [3]. In particular,
it is a round-robin tournament where each strategy plays against every other
strategy as follows: each agent plays N matches against each other agent, incl.
one’s own “twin”. A match consists of T' rounds. The agents do not know 7" or N
and cannot tweak their strategies with respect to the duration of the encounter.
Similarly, the strategies are not allowed to use any other assumptions (such as,
e.g., the general or specific nature of the opponent they are playing against in
a given match). Indeed, the only data available to the learning and adaptable
strategies in our “pool” of tournament participants (see below) is what they
can learn and infer about the future rounds, against a given opponent, based
on the bids and outcomes of the prior rounds of the current match against that
opponent; no other knowledge of meta-knowledge of any kind is available to the
strategies participating in our tournament.

In every round, each agent must select a valid bid. Thus, the action space
of an agent in the tournament is A = {2,3,...,100}. Let C denote the set of



strategies that play one-against-one matches with each other, that is, the set
of agents competing in the tournament. Agents’ actions are defined as follows:
x¢ = the bid traveler x makes on round ¢; and x,; = the bid traveler x makes
on round ¢ of match n.

Reward per round, R : A x A — Z € [0,101], for action « against action S,
where «, 8 € A, is defined as R(«, 8) = min(a, 8)+2-sgn(f—a), where sgn(z)

is the usual sign function. Therefore, the total reward M : S x S — R received
T

by agent x in a match against y is defined as M(x,y) = Z R(xy, y1). In a
t=1

sequence of matches, the reward received by agent x in the n'* match against

y is denoted as M, (z,y). In order to make a reasonable baseline comparison,

we use the same classes of strategies as in [9], ranging from rather simplistic to

moderately complex. Summary of the strategy classes follows; for a more detailed

description, see [9].

The “Randoms”: The first, and simplest, class of strategies play a random
value, uniformly distributed across a given interval. We have implemented two
instances using the following intervals: {2,3,...,100} and {99, 100}.

The “Simpletons”: The second extremely simple class of strategies which
choose the exact same dollar value in every round. The values we used in the tour-
nament were z; = 2 (the lowest possible), z; = 51 (“median”), z; = 99 (slightly
below maximal possible; would result in maximal individual payoff should the op-
ponent consistently play the highest possible action, which is $100), and z; = 100
(the highest possible).

Tit-for-Tat-in-spirit: The next class of strategies are those that can be
viewed as Tit-for- Tat-in-spirit, where Tit-for-Tat is the famous name for a very
simple, yet very effective, strategy for the iterated prisoner’s dilemma [1-3, 18].
The idea behind Tit-for-Tat (TFT) is simple: cooperate on the first round, then
“do to thy neighbor” (that is, opponent) exactly what he did to you on the pre-
vious round. We note that the baseline PD can be viewed as a special case of our
TD, when the action space of each agent in the latter game is reduced to just two
actions: {BidLow, BidHigh}. However, unlike iterated PD, even in the baseline
version iterated TD as defined above, each agent has many actions at his dis-
posal. In general, bidding high values in ITD can be viewed as an approximation
of “cooperating” in IPD, whereas playing low values is an approximation of “de-
fecting”. We define several Tit-for-Tat-like strategies for ITD. These strategies
can be roughly grouped into two categories. One are the simple TFT strategies
bid value € below the bid made by the opponent in the last round, where we
restricted € € {1,2}. The second category are the predictive TFT strategies that
compare whether their last bid was lower than, equal to, or higher than that
of the other agent. Then a bid is made similar to the simple TFT strategies,
i.e. some value € below the bid made by competitor ¢ in the last round, where
c € {z,y} and € € {1,2}. The key distinction is that a bid can be made relative
to either the opponent’s last bid or the bid made by the agent strategizing along
the TFT lines himself. In essence, the complex TFT strategies are attempting
to predict the opponent’s next bid based on the bids in the previous round and,



given that prediction, they attempt to outsmart the opponent. A variant of TF'T
was the overall winner of a similar (but much smaller and simpler) iterated pris-
oner’s dilemma round-robin tournament in [1]. Given the differences between
traveler’s and prisoner’s dilemmae, we were very curious to see how well would
various TFT-based strategies do in the iterated TD context.

“Mixed”: The mixed strategies combine up to three pure strategies based
on a probability mass. For each mixed strategy, a pure strategy o € C' is se-
lected from one of the other strategies defined in the competition for each round
according to a specified probability distribution (see Table ). Once a strategy
has been selected, the value that ¢ would bid at time step ¢ is bid. We chose to
use only mixtures of the TFT, Simpleton, and Random strategies. This allows
for greater transparency when attempting to decipher the causes of a particular
strategy’s performance.

The notation in Table 1is Mized followed by up to three (Strategy, Probability)
pairs, where each such pair represents a strategy and the probability that that
strategy is selected for any given round. Simpleton strategies are represented
simply by their bid, e.g. (100,20%). Random strategies are represented by the
letter R followed by their range, e.g. (R[99,100],20%). TFT strategies come in
two varieties: simple and complex. In Mized strategies, a Simple TFT used in
the “mix” is represented by TFT(y — n), where n is the value to bid below the
opponent’s bid (that is, the value of y). Complex TFTs used in a given “mix”
are represented with L, E; and H indicators (denoting Lower, Fqual and Higher),
followed by the bid policy. Bid policies are based on either the opponent’s previ-
ous bid (y) or this agent’s own previous bid (z). Details can be found in [9]. An
example (see Table 1) will hopefully clarify this somewhat cumbersome notation:

Mixed: (L(y — g)E(x — g)H (z — g),80%); (100, 10%); (2, 10%) denotes a com-
plex mixed strategy according to which an agent:

— plays a complex TFT strategy 80% of the time, in which it bids: (i) the
opponent’s last bid minus the granularity if this strategies last bid was lower
than its opponent’s; (ii) this strategies last bid minus the granularity if this
strategies last bid was equal to its opponent’s; and (iii) strategy’s last bid
minus the granularity if this strategies last bid was higher than its oppo-
nent’s;

— 10% of the time simply bids $100, that is, plays the Simpleton $100 strategy;

— the remaining 10% of the time bids $2 (i.e., plays the Simpleton $2 strategy).

In the version of ITD reported in this paper, the value of bid granularity is g = 1
throughout.

Buckets - Deterministic: These strategies keep a count of each bid by
the opponent in an array of buckets. The bucket that is most full (i.e., the value
that has been bid most often) is used as the predicted value, with ties being
broken by one of the following methods: the highest valued bucket wins, the
lowest valued bucket wins, a random bucket wins, and the most recent tied-for-
the-lead bucket wins. The strategy then bids the highest possible value strictly
below the predicted opponent’s bid. (If the opponent bids the lowest possible
value, which in our baseline version of TD is $2, then the deterministic bucket



agent bids that lowest value, as well.) An instance of each tie breaking method
above competed as a different bucket-based strategy in the tournament.

Buckets - Probability Mass Function: As with deterministic buckets,
this strategy class counts instances of the opponent’s bids and uses them to
predict opponent’s next bid. Rather than picking the value most often bid, the
buckets are used to define a probability mass function from which a prediction
is randomly selected. Values in the buckets decay over time in order to assign
greater weights to the more recent data than to the older data; we’ve selected a
retention rate (0 < v < 1) to specify the speed of memory decay. We have entered
into our tournament several instances of this strategy using the following rate
of retention values 7: 1.0, 0.8, 0.5, and 0.2. The strategy bids the largest value
strictly below the predicted value of the opponent’s next bid (so, in the default
version, it is the “one under” the predicted opponent’s bid). We note that the
“bucket” strategies based on probability mass buckets are quite similar to a
learning model in [8].

Simple Trending: This strategy looks at the previous k time steps, creates
a line of best fit on the rewards earned, and compares its slope to a threshold
0. If the trend has a positive slope greater than €, then the agent will continue
to play the same bid it has been as the rewards are increasing. If the slope is
negative and |slope| > 0, then the system is trending toward the Nash equi-
librium and, thus, the smaller rewards. In this case, the agent will attempt to
entice the opponent to collaboration and will start playing $100. Otherwise, the
system of bidding and payouts is relatively stable and the agent will play the
adversarial “one under” strategy that attempts to outsmart the other player. We
have implemented instances of this strategy with an arbitrary 6 of 0.5 and the
following values of k: 3, 10, and 25, where larger values of k mean, trending is
determined over a longer time-window. In particular, we have incorporated a
simple explicit mechanism to push the player away from the “bad” NE: “sim-
ple trenders” share the adversarial philosophy of TFT as long as the rewards
are high, but unilaterally move into collaboration-inviting, high-bidding behav-
ior when the rewards are low (presumably, hoping that an adaptable opponent
would follow the suit in the subsequent rounds).

Q-learning: This strategy uses a learning rate o to emphasize new informa-
tion and a discount rate v to emphasize future gains. In particular, the learners
in our tournament are simple implementations of Q-learning [22] as a way of
predicting the best action at time (¢ + 1) based on the action selections and
payoffs at times [1, ..., ¢]. This is similar to the Friend-or-Foe Q-learning method
[13], without the limitation of having to classify the allegiance of one’s oppo-
nent. Due to scaling issues, our implementation of Q-learning does not capture
the entire state/action space but rather divides it into a handful of meaningful
classes, namely, based on just three states and three actions, as follows:

State: The opponent played higher, lower, or equal to our last bid.

Action: We play one higher than, one lower than, or equal to our previous
bid.



Recall that actions are defined for just a single time-step. The actual imple-
mentation treats the state as a collection of moves by the opponent over the last
k rounds. We have decided to use k = 5 as an intuitively reasonable (but admit-
tedly fairly arbitrary) value for k as it allows us to capture some history without
data sizes becoming unmanageable. We are implementing this basic Q-learning
algorithm with the learning rates of 0.8, 0.5 and 0.2.

Zeuthen Strategies: A Zeuthen Strategy [24] calculates the level of risk
of each agent, and makes concessions accordingly. Risk is the ratio of loss from
accepting the opponent’s proposal vs. the loss of forcing the conflict deal (the
deal made when no acceptable proposal can be found). While ITD is strictly
speaking not a negotiation, one can still treat each bid (i.e. z; and y;) to be a
proposal: if ; = ¢, then agent = is proposing to agent y the pair (i,7 + 1) as
the next action pair. For TD, we consider the conflict deal to be the N.E. at
(82, $2). Given the proposals of each agent, a risk comparison is done. An agent
continues making the same bid as long as its risk is greater than or equal its
opponent’s. Otherwise, the agent will make the minimal sufficient concession:
the agent adjusts its proposal so that (i) its risk is higher than opponent’s risk
and (ii) the opponent’s utility increases as little as possible. Due to the peculiar
structure of TD, it is possible that a “concession” actually leads to a loss of
utility for the opponent. This, however, goes against the very notion of making a
concesston. Thus, we have implemented two Zeuthen strategies: one that allows
counter-intuitive negative concessions and one that does not.

The metric that we use to evaluate relative performances of various strategies
is essentially “the bottom line”, that is, appropriately normalized dollar amount
that a player would win if she engaged in the prescribed number of plays against
a particular (fixed) opponent. More specifically, the metric U; below is the sum
of all payoffs gained by an agent, normalized by the total number of rounds
played and the maximum allowable reward:

U()—iz L iM( )
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where R* is the maximum possible reward given in one round, N is the number

of matches played between each pair of competitors, 7" is the number of rounds
per each match, and |C| is the number of competitors in the tournament. In
experiments discussed in this paper, R* = $101, N = 100, T' = 1000 and |C| =
38. We note that some other candidate metrics for measuring performance in
ITD, and analyzes of performances of various strategies w.r.t. those alternative
metrics, can be found in [? ].

4 Results for the individual strategies

The Traveler’s Dilemma Tournament with which we have experimented involves
a total of 38 competitors (distinct strategies), playing 100 head-to-head matches
made of 1000 rounds each. The final rankings with respect to the (normalized)
“bottom-line” metric U; are given in Table 1 below.



We briefly summarize our main findings. First, the top three performers in
our tournament turn out to be three “dumb” strategies that always bid high
values. These three strategies are greedy in a very literal, simplistic sense, and
are all utterly oblivious to what their opponents do — yet they outperform, and by
a relatively considerable margin, the adaptable strategies such as the Q-learners
and the “buckets”. The strategy which always bids the maximum possible value
($100 in our case) and the strategy which always bids “one under” the maximum
possible value are both outperformed by the strategy which randomly alternates
between the two: “Random{99, 100}” picks to bid either $99 or $100 with equal
probabilities, and without any consideration for the opponent’s bids or previous
outcomes.

The Zeuthen strategy that does not allow for negative “concessions” per-
forms quite well, and is the highest performer among all “smart” and adaptable
strategies in the tournament. The first work (as far as we are aware) that pro-
posed the use of negotiation-inspired Zeuthen strategies in the game strategy
for ITD context (see [9]) encountered some stern criticism on the grounds that
playing an ITD-like game has little or nothing in common with multi-agent nego-
tiation. However, ITD is a game ripe for collaboration among self-interested yet
adaptable agents, and an excellent performance of a strategy such as Zeuthern-
Positive, that is willing to sacrifice its short-term payoff in order to entice the
other agent to more collaborative (i.e., systematic higher bidding) behavior in
the subsequent rounds, validates our initial argument that highly collaborative,
non-greedy (insofar as “outsmarting” the opponent) adaptable strategies should
actually be expected to do quite well against a broad pool of other adaptable
strategies. (See also our comments on the poor showing of TFT-based strate-
gies, as well as the next section in which we summarize the group or team
performances across main classes of adaptable strategies, where each such class
is viewed as a team.)

We find it rather interesting that (i) TFT-based strategies, in general, do
fairly poorly, and (ii) their performances vary considerably depending on the
exact details of the bid prediction method. In [9], it is reported that a relatively
complex TFT-based strategy that, in particular, (a) makes a nontrivial model of
the other agent’s behavior and (b) “mixes in” some randomization, is among the
top performers, whereas other TFT-based strategies exhibit mediocre (or worse)
performance. In our analysis of individual performances, the top pure TFT based
performer, which bids “one under” the opponent if the opponent made a lower
bid than our TF'T agent on the previous round, and lowers its own bid in the
previous round in other scenarios, shows a mediocre performance with respect
to the rest of the tournament participants. The best simple TFT strategy simply
always bids “two below” the opponent’s bid on the previous round. All other
pure TFT-based strategies, simple and complex (i.e., predictive) alike, perform
poorly, and some of the sophisticated predictive TFT strategies are among the
very worst performers among all adaptable strategies in the tournament. This is
in stark contrast to Axelrod’s famous IPD tournament, where the original TFT
strategy ended up the overall winner [1, 2].



We observe that the probabilistic bucket strategies perform decently overall,
as long as the retention rate is strictly less than 1; with the retention rate of 1,
guessing the opponent turns out to be abysmally poor and is by far the worst
adaptable strategy in the tournament. We have therefore restricted our further
analysis only to the bucket strategies with v < 1 (and have eliminated the latter
from the tournament table and further analysis). Probabilistic bucket based
strategies with v < 1 all perform fairly similarly to each other, that is, the exact
value of the retention rate v does not seem to make too much of a difference, as
long as v < 1.

Some additional observations on the individual performances of various strate-
gies in our tournament include:

— Overall, there seems to be an overbid bias. The difference in payout is only
two times the bonus/malus (which, heretofore, we will simply refer to as
'bonus’ for brevity, with an understanding that it can come with a + or
- sign). We'd expect that strategies that are more careful about bidding
below their opponents would do better when the magnitude of the bonus
is increased. Impact of the relative size of bonus, §, with respect to the
granularity of bids g, on TD game structure is the subject of [20].

— It is not clear whether reinforcement learning (at least in the manner in
which we have captured it) really helps in becoming a top performer in
the Iterated TD; in particular, the Q-learning based strategies show fairly
mediocre performance.

— It is far from clear whether more complex models of the other agent really
help insofar as bidding better, and hence performing better, in the long run.
The best adaptable strategies (with an exception of Positive-Zeuthen) are the
very simple ones: linear approximators (“simple trenders”) and bucket-based
ones, whereas Q-learners and elaborate adaptable TFT-inspired strategies in
general perform considerably below the simple trenders and simple buckets.

— Not all TFT-based strategies in the TD are “born equal”; in fact, perfor-
mance of different TFT variants tends to vary broadly with respect to all
four of our metrics. This observation opens up interesting questions from
the meta-learning [21] and meta-reasoning standpoints: how can one design
TFT-based strategies that are likely to do well across tournaments (that is,
choices of opponents) and across performance metrics.

Last but not least, the single worst performer w.r.t. the normalized dollar-
amount metric is, not surprisingly, the always-bid-lowest-possible strategy. This
strategy can be viewed as the ultimate adversarial strategy that tries to always
underbid, and hence outperform, the opponent — regardless of the actual payoff
earned. (By bidding the lowest possible value, one ensures to never be out-earned
by the opponent; some examples of such behavior from politics and economic
markets can be readily found, and are discussed elsewhere.) Recall that “always
bid $2” also happens to be the unique NE strategy that, according to classical,
NE-based game theory, a rational agent that assumes a rational opponent should
actually make this strategy her strategy of choice.
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0.760787 [Random [99, 100]

0.758874 [Always 100

0.754229 |Always 99

0.754138 |Zeuthen Strategy - Positive

0.744326 |Mixed - {L{y-g) E(x-g) H(x-g), 80%); (100, 20%)}
0.703589 |Simple Trend - K =3, Eps =0.5

0.681784 |Mixed - {TFT (y-1), 80%); (R[99, 100], 20%)}
0.666224 |Simple Trend - K =10, Eps =0.5

0.639572 |Simple Trend - K =25, Eps =0.5

0.637088 |Mixed - {L{x) E(x) H[y-g), 80%); (100, 20%)}
0.534378 |Mixed - {L{y-g) E{x-g) H(x-g), 80%); (100, 10%); (2, 10%)}
0.498134 [Q Learn - alpha=0.2, discount=0.0

0.497121 |Q Learn - alpha=0.5, discount=0.0

0.496878 |Q Learn - alpha=0.5, discount=0.9

0.495956 |Q Learn - alpha=0.2, discount=0.9

0.493640 [Q Learn - alpha= 0.8, discount=0.0

0.493639 |Buckets - (Fullest, Highest)

0.493300 |Q Learn - alpha= 0.8, discount=0.9

0.492662 |TFT - Low(y-g) Equal(x-g) High{x-g)
0.452596 |Zeuthen Strategy - Negative

0.413992 |Buckets - PD, Retention =0.5

0.413249 |Always 51

0.412834 |Buckets - PD, Retention =0.2

0.408751 |Buckets - PD, Retention =0.8

0.406273 |Buckets - (Fullest, Random)

0.390303 |TFT- Simple (y-1)

0.387105 |Buckets - (Fullest, Mewest)

0.334967 |Buckets - (Fullest, Lowest)

0.329227 [TFT- Simple (y-2)

0.316201 |Random [2, 100]

0.232063 |Mixed - {L{y-g) E(x-g) H(x-g), B0%); (2, 20%)}
0.164531 |Mixed - {L{x) E(x) H(y-g), 80%); (100, 10%]); (2, 10%)}
0.136013 |TFT - Low(x) Equal(x) High(y-g)

0.135321 |TFT - Low(x) Equal(x-2g) High{y-g)

0.030905 |TFT - Low(x-2g) Equal(x} High{y-g)

0.030182 |TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.026784 |Mixed - {L{x) E{x) H{y-g). 80%); (2, 20%)}
0.024322 |Always 2

Table 1: Final rankings of individual strategies w.r.t. metric Uy

5 Team performance analysis

Perhaps the greatest conceptual problem with an experimental study of iter-
ated games based on a round-robin tournament is the sensitivity of results with
respect to the choice of participants in the tournament. While our choice of
the final 38 competing strategies was made after a great deal of deliberation
and careful surveying of prior art, we are aware that both absolute and relative
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performances of various strategies in the tournament might have been rather dif-
ferent had those strategies encountered a different set of opponents. The types
of strategies we implemented (the Randoms, the Simpletons, Simple Trenders,
Tit-For-Tat, Q-learners, etc.) have been extensively studied in the literature,
and are arguably fairly “representative” of various relatively cognitively simple
(and hence requiring only a modest computational effort) approaches to play-
ing iterated PD, iterated TD and similar games. Within the selected classes of
strategies, we admittedly made several fairly arbitrary choices of the critical pa-
rameters (such as, e.g., the learning rates in Q-learning). It is therefore highly
desirable to be able to claim robustness of our findings irrespective of the exact
parameter values in various parameterized types of strategies.

The “team performance” study summarized in this section has been under-
taken for two main reasons. One, we’d like to reduce as much as possible the
effects of some fairly arbitrary choices of particular parameter values for types of
strategies. Two, given the opportunities for collaboration that Iterated TD offers,
yet the complex structure of this game, we would like to see which pairs of strat-
egy types, when matched against each other, mutually reinforce and therefore
benefit each other; this analysis also applies to “self-reinforcement” as strate-
gies of the same type are also matched up “against” each other. For example,
we want to investigate how well the Q-learners get to do, with time, if playing
Iterated TD “against” themselves.

Figure 1 summarizes relative performances of each strategy class against
a given type of opponents, with the Ul score against the uniformly random
strategy Random/[2...100] used as the yardstick (hence normalized to 1). For each
given “team”, the contributions of individual strategies within the team all count
equally. Here is how is the plot Figure 1 to be read. Consider the second leftmost
cluster of twelve adjacent bars, corresponding to 12 groups of strategies. The very
leftmost one is the performance against the random strategy (in this particular
case, it’s the mix made of two Randoms vs. itself); the bar indicates that “mixed
randoms vs. mixed randoms” score about 35% higher than against the yardstick,
which is defined as normalized score against Random[2...100] alone. The next
bar (second from the left) in the same group shows that the same mix of random
strategies scores about 36% higher against the “mix” or team of four different
“always bid the same value” strategies (see previous section) than against the
yardstick Random]2...100]. The highest bar in this cluster shows that the mix of
random strategies scores against the complex, predictive TFTs nearly two and a
half times higher than against the uniformly random “yardstick” opponent, etc.

We now summarize our most interesting findings for this particular set of
strategy classes or groups. Overall, Simple Trending seems to be the best gen-
eral class of strategies against the given pool of opponents. The simple trenders
are overall most consistent group of adaptable strategies: each of them performs
quite well individually against (see Table ). Therefore, after the simplistic “al-
ways bid very high”, the simple trenders offer the best tradeoff between sim-
plicity and underlying computational effort on one hand, and performance, on
the other. Among the simple trenders, longer “memory window” of the recent
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previous runs leads to relatively poorer performance. One possible explanation
is that, with a fairly long-term memory (such as for K = 25), the “uphill” and
”downhill” trends tend to average out, resulting in smaller slopes (in the abso-
lute value) of the linear trend approximator, and hence slower adjustments in
the simple trenders’ bidding.

Essentially adversarial in a game that is far from zero-sum and generally re-
wards cooperation, predictive TFT strategies “bury themselves into the ground”
quite literally: their performance against themselves is among the worst of all
team performance pairs, and is the “safest” way of getting to and then staying at
the Nash equilibrium ($2, $2). In stark contrast, however, TFT-based strategies
and Zeuthen strategies work well together; that is, Zeuthens’ initial “generosity”
in order to encourage the opponent to move towards higher bids, in the long run,
benefits TFT-based strategies when matched against the Zeuthens. Another in-
teresting result about TFT strategies: when some randomization is added to a
TFT-based strategy, esp. of a kind where very high bids are made in randomly
selected rounds, the overall performance improves dramatically, as evidenced by
the high scores of the group TFT-Mixed in comparison to both simple and com-
plex “pure” TFT strategies. In fact, the mixed TFT strategies (that do include
some randomization) are, together with simple trenders, the best “team” overall.
In particular, mixed TFTs do very well when matched against any adaptable op-
ponent in our tournament. In contrast, the predictive complex TFTs that don’t
use any randomization are by far the worst “team” of strategies overall.

Performance by Strategy Group
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Figure 1: Relative group performances for the selected classes

Q-learners handle TFT based strategies quite well. Furthermore, Q-Learners
and Simple Trenders rather nicely reinforce each other, i.e., when matched up
“against” each other, both end up doing quite well. Similar mutual reinforcement
of rewarding collaborative play can be observed when buckets (both probabilistic
and deterministic) are matched up with Randomized TFTs and Zeuthens. One
very striking instance of mutual reinforcement is what Zeuthens do for complex
predictive TFTs (the variants without random bids), and in the process also for
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themselves, when matched against predictive TFTs. In contrast to these exam-
ples of mutual reinforcement, neither short- nor long-term memory Q-learners
perform particularly impressively against themselves. We suspect that this in
part is due to high sensitivity to the bid choices in the initial round; this sensi-
tivity to initial behavior warrants further investigation. Moreover (see also Table
1), choice of the learning rate o seems to make a fairly small difference: all Q-
learning based strategies show similar performances to each other against most
types of opponents.

6 Summary and future work

We study Iterated Traveler’s Dilemma, an interesting two-player non-zero sum
game. We analyze this game by designing, implementing and analyzing a round
robin tournament with 38 participating strategies. Our study of the performance
of various strategies with respect to the “bottom-line” metric has corroborated
that, for an iterated game whose structure is far from zero-sum, the traditional
game-theoretic notions of rationality, based on the concept(s) of Nash equilib-
ria, are rather unsatisfactory [9]. We have also learned that (i) common-sense
unselfish greedy behavior (“bid high”) generally tends to be rewarded in ITD,
(ii) not all adaptable/learning strategies are necessarily successful, even against
simple opponents, (iii) more complex models of an opponent’s behavior may
but need not result in better performance, (iv) exact choices of critical parame-
ters may have a great impact on performance (such as with various bucket-based
strategies) or hardly any impact at all (e.g., the learning rate in Q-learners), and
(v) collaboration via mutual reinforcement between considerably different adapt-
able strategies appears to often be much better rewarded than self-reinforcement
between strategies that are very much alike each other.

Our analysis also raises several interesting questions, among which we are
particularly keen to further investigate (i) to what extent other variations of
cognitively simple models of learning can be expected to help performance, (ii)
to what extent complex models of the other agent really help an agent increase
its payoff in the iterated play, and (iii) assuming that this phenomenon occurs
more broadly than what we have investigated so far, what general lessons can
be learned from the observed higher rewards for heterogeneous mutual reinforce-
ment than for homogeneous self-reinforcement?

Last but not least, in order to be able to draw general conclusions less depen-
dent on the selection of strategies in a tournament, we are also pursuing evolving
a population of strategies akin to approach found in [6]. We hope to report new
results along those lines in the near future.
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