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Abstract— We study an interesting 2-player game known
as the Iterated Traveler’s Dilemma, a non-zero sum game
in which there is a large number of possible actions in
each round and therefore an astronomic number of possible
strategies overall. What makes the Iterated TD particularly
interesting is that it defies the usual prescriptions of classi-
cal game theory insofar as what constitutes an “optimal”
strategy. In particular, TD has a single Nash equilibrium, yet
that equilibrium corresponds to a very low payoff, essentially
minimizing social welfare. We propose a number of possible
strategies for ITD and perform a thorough comparison via a
round-robin tournament in the spirit of Axelrod’s well-known
work on the Prisoner’s Dilemma. We motivate the choices of
“players” that comprise our tournament and then analyze
their performance with respect to several metrics. Finally, we
share some interesting conclusions and outline directions for
future work.

Keywords: game theory, two-person non-zero-sum games,
bounded rationality, decision making under uncertainty, tourna-
ments

1. Introduction
Theoretical computer science, mathematical economics

and AI research communities have extensively studied strate-
gic interactions among two or more autonomous agents
from a game-theoretic standpoint. Game theory provides
mathematical foundations for modeling interactions among,
in general, self-interested autonomous agents that may need
to combine competition and cooperation in non-trivial ways
in order to meet their objectives [1–3]. A classical example
of such interactions is the iterated prisoner’s dilemma [4, 5],
a two-person non-zero sum game that has been extensively
studied by psychologists, sociologists, economists and po-
litical scientists, as well as mathematicians and computer
scientists.

We have been studying an interesting and complex 2-
player game known as the Iterated Traveler’s Dilemma [6–
8]. The Traveler’s Dilemma (TD) is a non-zero sum game in
which each player has a large number of possible actions.
In the iterated context, this means many possible actions
in each round and therefore (for games with many rounds)
an astronomic number of possible strategies overall. What

makes Iterated TD particularly interesting, is that its struc-
ture defies the usual prescriptions of classical game theory
insofar as what constitutes an “optimal” strategy. There are
two fundamental problems to be addressed in this context.
One is finding an optimal, or close to optimal, strategy from
the standpoint of an individual intelligent agent. This is the
“default” problem in classical game theory: finding the best
“play” for each agent participating in the game. The second
core problem is identifying pairs of strategies that would
result in an overall desirable behavior, such as maximizing
a joint utility function of some sort (i.e., appropriately
defined “social welfare”). We have been investigating both
these problems in the context of the Iterated Traveler’s
Dilemma, which has thus far received only modest attention
by the computer science research communities. In this paper,
we shed some light on the first problem above using a
round-robin, many-round tournament and several different
performance metrics. We also draw several interesting (and
possibly controversial) conclusions based on our extensive
experimentation and analyses.

The rest of this paper is organized as follows. We first de-
scribe the Traveler’s Dilemma (TD) game and motivate why
we find it interesting. We also briefly survey the prior art. We
then describe the Iterated TD round-robin tournament that
we have devised, implemented and experimented with. In
that context, we focus on the actual strategies we have cho-
sen as the participants in this tournament, and on why these
strategies are good examples of the kinds of strategies one
would expect to be “reasonable”. We then describe several
metrics that we have used as yardsticks of performance of the
various strategies involved in our round-robin tournament.
Next, we summarize our tournament results and discuss our
main findings, both those that we expected and those that we
honestly find fairly surprising. Finally, we draw conclusions
based on our analytical and experimental results to date and
outline some promising directions for future research.

2. Traveler’s Dilemma (TD)
The Traveler’s Dilemma was originally introduced by K.

Basu in 1994 [9]. The motivation behind the game was
to show the limitations of classical game theory [10], and
in particular the notions of individual rationality that stem
from game theoretic notions of “solution” or ”optimal play”



based on well-known mathematical concepts such as Nash
equilibria [3, 9, 11]. TD is defined with the following
parable:

“An airline loses two suitcases belonging to two different
travelers. Both suitcases happen to be identical and contain
identical antiques. An airline manager tasked to settle the
claims of both travelers explains that the airline is liable for
a maximum of $100 per suitcase, and in order to determine
an honest appraised value of the antiques the manager
separates both travelers so they can’t confer, and asks them
to write down the amount of their value at no less than $2
and no larger than $100. He also tells them that if both
write down the same number, he will treat that number as
the true dollar value of both suitcases and reimburse both
travelers that amount. However, if one writes down a smaller
number than the other, this smaller number will be taken as
the true dollar value, and both travelers will receive that
amount along with a bonus/malus: $2 extra will be paid
to the traveler who wrote down the lower value and a $2
deduction will be taken from the person who wrote down
the higher amount. The challenge is: what strategy should
both travelers follow to decide the value they should write
down?”

This game has several interesting properties. Perhaps the
most striking among them is that its unique Nash equilib-
rium, the action pair (p, q) = ($2, $2), is actually rather bad
for both players. This choice of actions results in:
• very low payoff to each player individually (basically,

only slightly above the absolutely worst possible, which
is $0); and, moreover,

• it minimizes social welfare, if we understand social
welfare to simply be the sum of the two players’
individual utilities.

Yet, it has been argued [7, 9, 12] that a perfectly rational
player, according to classical game theory, would “reason
through” and converge to choosing the lowest possible value,
$2. Given that the TD game is symmetric, each player would
reason along the same lines and, once selecting $2, not
deviate from it, as unilaterally deviating from a Nash equilib-
rium is presumably bad ”by definition”. However, the non-
equilibrium pair of strategies ($100, $100) results in each
player earning $100, very near the best possible individual
payoff. Hence, the early studies of TD concluded that this
game demonstrates a woeful inadequacy of classical, Nash
Equilibrium based notions of rational behavior. It has also
been shown that humans (both game theory experts and
laymen) tend to play far from the Nash equilibrium [6], and
therefore fare much better than they would if they followed
the classical approach.

In general, basing the notion of a “solution” to a game on
Nash equilibria (NE) has been known to be tricky. Among
other things, a game may fail to have any NE (in pure
strategies), or it may have multiple Nash equilibria. TD is
interesting precisely because it has a unique pure-strategy

Nash equilibrium, yet this NE results in nearly as low a
payoff as one can get. The situation is further complicated by
the fact that the game’s only “stable” strategy pair is easily
seen to be nowhere close to Pareto optimal; there are many
obvious ways of making both players much better off than
if they play the equilibrium strategies. In particular, while
neither stable nor an equilibrium, ($100, $100) is the unique
strategy pair that maximizes social welfare (understood as
the sum of individual payoffs), and is, in particular, Pareto
optimal. So, the fundamental question arises, how can agents
learn to sufficiently trust each other so that they end up
playing this optimal strategy pair in the Iterated TD or
similar scenarios?

3. The Iterated TD Tournament
Our Iterated Traveler’s Dilemma tournament is similar

to Axelrod’s Iterated Prisoner’s Dilemma tournament [13].
In particular, it is a round-robin tournament where each
agent plays N matches against each other agent and its
own “twin”. A match consists of T rounds. In order to
have statistically significant results (esp. given that many of
our strategies involve randomization in some way), we have
selected N = 100 and T = 1000. In each round, both agents
must select a valid bid within the action space, defined as
A = {2, 3, . . . , 100}.

The method in which an agent chooses its next action
for all possible histories of previous rounds is known as a
strategy. A valid strategy is a function S that maps some set
of inputs to an action: S : · → A. In general, the input
may include the entire history of prior play, or, in the case
of bounded rationality models, an appropriate summary of
the past histories.

We next define the participants in the tournament, that
is, the set of strategies that play one-against-one matches
with each other. Let C be the set of agents competing in the
tournament: C = {c : (c ∈ S) ∧ (c is in the tournament)}.

We specify a pair of agents competing in a match as
(x, y) ∈ C. While we refer to agents as opponents or
competitors, this need not necessarily imply that the agents
act as each other’s adversaries.

We define agents’ actions as follows:

xt = the bid traveler x makes on round t.
xnt = the bid traveler x makes on round t of match n.

We next define the reward function that describes agent
payoffs. Reward per round, R : A × A → Z ∈ [0, 101],
for action α against action β, where α, β ∈ A, is defined
as R(α, β) = min(α, β) + 2 · sgn(β − α), where sgn(x)
is the usual sign function. Therefore, the total reward M :
S × S → R received by agent x in a match against y is
defined as:

M(x, y) =

T∑
t=1

R(xt, yt)



Within a sequence of matches, the reward received by
agent x in the nth match against y shall be denoted as
Mn(x, y).

4. Strategies in the Tournament
In order to make a reasonable baseline comparison, we

chose to utilize the same strategies used by [14], ranging
from rather simplistic to relatively complex. What follows
is a brief description of the 9 classes of strategies. For a
more in depth description see [14].

Randoms: The first, and simplest, class of strategies play
a random value, uniformly distributed across a given interval.
We have implemented two instances using the following
integer intervals: [2, 100] and [99, 100].

Simpletons: The second extremely simple class of strate-
gies are agents that choose the same dollar amount in every
round. The $ values we used in the tournament were xt = 2
(the lowest possible), xt = 51 (“median”), xt = 99 (one
below maximal possible, resulting in maximal payoff should
the opponent make the highest possible bid), and xt = 100
(the highest possible).

Tit-for-Tat, in spirit: The next class of strategies are
those that can be viewed as Tit-for-Tat-in-spirit, where Tit-
for-Tat is the famously simple, yet effective, strategy for the
iterated prisoner’s dilemma [4, 5, 13, 15]. The idea behind
Tit-for-Tat is simple: cooperate on the first round, then do
exactly what your opponent did on the previous round. In
the iterated TD, each agent has many actions at his disposal,
hence there are different ways of responding appropriately in
a Tit-for-Tat manner. In general, playing high values can be
considered as an approximate equivalent of “cooperating”,
whereas playing low values is an analogue of “defecting”.
Following this basic intuition, we have defined several Tit-
for-Tat-like strategies for the iterated TD. These strategies
can be roughly grouped into two categories. First, the simple
Tit-for-Tat strategies bid some value ε below the bid made by
the opponent in the last round, where ε ∈ {1, 2}. Second,
the predictive Tit-for-Tat strategies compare whether their
last bid was lower than, equal to, or higher than that of their
opponent. Then a bid is made similar to the simple TFT
strategy, i.e. some value ε below the bid made by competitor
c in the last round, where c ∈ [x, y] and ε ∈ {1, 2}. The key
distinction is that a bid can be made relative to either the
opponent’s last bid or the bid made by one’s own strategy
itself. In essence, this strategy is predicting that the opponent
may make a bid based on the agent’s own last move and,
given that prediction, it attempts to “outsmart” the opponent.

Mixed: The mixed strategies probabilistically combine
up to three strategies. For each mixed strategy, a strategy
σ is selected from one of the other strategies defined in
the competition (i.e., σ ∈ C) for each round according to
a probability mass distribution. Once a strategy has been
selected, the value that σ would bid at time step t is bid.
We chose to use only mixtures of the TFT, Simpleton, and

Random strategies. This allowed for greater transparency
when attempting to interpret and understand the causes of a
particular strategy’s performance.

Buckets – Deterministic: These strategies keep a count
of each bid by the opponent in an array of "buckets". The
bucket that is most full (i.e., the value bid most often) is
used as the predicted value, with ties being broken by one
of the following methods: the highest valued bucket wins, the
lowest valued bucket wins, a random bucket wins, and the
most recently tied-for-the-largest bucket wins. The strategy
then bids the next lowest value below the predicted value.
An instance of each tie breaking method competed in the
tournament.

Buckets – Probability Mass Function based: As above,
this strategy class counts instances of the opponent’s bids
and uses them to predict the agent’s own next bid. Rather
than picking the value most often bid, the buckets are used to
define a probability mass function from which a prediction
is randomly selected. Values in the buckets decay over time
in order to emphasize newer data over old and we have
set a retention rate (0 ≤ γ ≤ 1) to determine the rate of
decay. We have entered into our tournament several instances
of this strategy using the following rate of retention values
γ: 0.8, 0.5, and 0.2. As above, the strategy bids the next
lowest value below the predicted value. We observe that the
“bucket” strategies based on probability mass buckets are
quite similar to a learning model in [7].

Simple Trend: This strategy looks at the previous k time
steps, creates a line of best fit on the rewards earned, and
compares its slope to a threshold δ. If the trend has a positive
slope greater than δ, then the agent will continue to play the
same bid it has been as the rewards are increasing. If the
slope is negative and |slope| > δ, then the system is trending
toward the Nash equilibrium and, thus, the smaller rewards.
In this case, the agent will attempt to maximize social
welfare and play 100. Otherwise, the system of bidding
and payouts is relatively stable and the agent will play the
“one under” strategy. We have implemented instances of this
strategy with δ = 0.5 and the following values of k: 3, 10,
and 25. While our choice of δ intuitively makes sense, we
admit that picking δ “half-way” between 0.0 and 1.0 is fairly
arbitrary.

Q-learning: This strategy uses a learning rate α to em-
phasize new information and a discount rate γ to emphasize
future gains. In particular, the learners in our tournament
are simple implementations of Q-learning [16] as a way
of predicting the best action at time (t + 1) based on the
action selections and payoffs at times {1, 2, ..., t}. This is
similar to the Friend-or-Foe Q-learning method [17] without
the limitation of having to classify the allegiance of one’s
opponent.

Due to scaling issues, our implementation of Q-learning
does not capture the entire state/action space but rather
divides it into a small number of meaningful classes, namely,



three states and three actions, as follows:
State: The opponent played higher, lower, or equal to our

last bid.
Action: Play one higher than, one lower than, or equal to

our previous bid.
Recall that actions are defined for a single round. Our

implementation treats each state as a collection of moves by
the opponent over the last k rounds. We have decided to
use 5 as an arbitrary value for k as it allows us to capture
some history without data sizes becoming unmanageable.
We have implemented this basic Q-learning algorithm with
the learning rates of 0.8, 0.5 and 0.2, and with discount
rates of 0.0 and 0.9, for a total of 6 different variations of
Q-learning.

Zeuthen Strategies: A Zeuthen Strategy [18] calculates
the level of risk of each agent, and makes concessions
accordingly. Risk is the ratio of loss from accepting the
opponent’s proposal to the loss of forcing the conflict deal
(the deal made when no acceptable proposal can be found).
While ITD is not a strict negotiation, we treat each bid as
a proposal. If xt = i, then X is proposing (i, i+ 1) be the
next action pair. For the Traveler’s Dilemma, we consider
the conflict deal to be the Nash Equilibrium at ($2, $2).

Given the proposals of each agent, a risk comparison is
done. An agent will continue to make the same proposal
while its risk is greater than or equal to its opponent’s. Other-
wise, the agent will make the minimal sufficient concession,
i.e. the agent adjusts its proposal so that (i) the agent’s risk is
higher than that of its opponent and (ii) the opponent’s utility
increases as little as possible. Due to the peculiar structure
of the Iterated TD game, it is possible for the “concession”
to actually lead to a loss of utility for the opponent. We
have therefore implemented two variations: one that allows
a negative concession and one that does not.

5. Utility metrics
In order to classify a particular strategy as better than

another, one needs to define the metric used to make this
determination. Our experimentation and subsequent analysis
were performed with respect to four distinct utility metrics.
The first, U1, treats the actual dollar amount as the direct
payoff to the agent. This is the most common metric in the
game theory literature; prior art on Iterated TD generally
considers only this metric or some variant of it. In contrast,
U2 is a “pairwise victory” metric: an agent strives to beat its
opponent, regardless of the actual dollar amount it receives.
Finally, we introduce two additional metrics, U3 and U ′3, that
attempt to capture both the payoff (dollar amount) that an
agent has achieved, and the “opportunity lost” due to not
playing differently. In a sense, both of these metrics attempt
to quantify how much an agent wins compared to how much
an omniscient agent (i.e., one that always correctly predicts
the other agent’s bid) would be able to win. To be clear, the
assumption here is one of omniscience, not omnipotence:

an “ideal” omniscient agent is still not able to actually force
what the other agent does.
Total reward: U1

This metric captures the overall utility rewarded to the
agent. It is simply a sum of all money gained, normalized
by the total number of rounds played and the maximum
allowable reward. It is defined as follows:

U1(x) =
1

|C|
∑
j∈C

[
1

max(R)NT

N∑
n=1

Mn(x, j)

]
where:
• max(R) is the maximum possible reward given in one

round;
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;

and
• |C| is the number of competitors in the tournament.

Pairwise Victory Count : U2

This metric captures the agent’s ability to do better than
its opponents on a match per match basis. The metric itself is
essentially the difference between matches won and matches
lost. The result is normalized and 0.5 is added in order to
bring all values inside the range [0.0, 1.0]. It is defined as
follows:

U2(x) = 0.5+
1

2|C|
∑
j∈C

[
1

N

N∑
n=1

sgn(Mn(x, j)−Mn(j, x))

]
where:
• N is the number of matches played between each pair

of competitors;
• |C| is the number of competitors in the tournament.
The intent of this metric is to capture a strategy’s ability

to “outsmart” its opponent, regardless of the possibility of a
Pyrrhic victory.
Perfect Score Proportion : U3

This metric attempts to capture the level of optimality of
an agent, where both the achieved payoff and the missed op-
portunity for yet higher payoff (based on what the opposing
agent does) are taken into account. The metric captures these
two aspects of performance by keeping a running total of
the lost reward ratio. This is the ratio of the reward received
to the best possible reward, given what the opponent has
played. The resulting sum is then normalized by the total
number of rounds played. The metric is formally defined as
follows:

U3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

R(xmt, jmt)

R(max(2, (jmt − 1)), jmt)

)]
where:



• N is the number of matches played between each pair
of competitors

• T is the number of rounds to be played in each match
• |C| is the number of competitors in the tournament

During the course of our work, it has been observed that this
metric tends to be biased in favor of strategies that overbid.
When overbidding, the difference between the reward re-
ceived and the optimal reward is at worst 4. Thus, regardless
of by how much an agent overbids, the lost reward ratio
remains relatively small.
Perfect Bid Proportion : U ′3

This metric is another attempt to capture the level of
optimality of the agent, but without the overbid bias. It does
so by keeping a running total of the bid imperfection ratio.
This is the difference between the agent’s bid and the ideal
bid, given what the opponent has played, divided by the
greatest possible difference in bids. Since we want to look
favorably upon a smaller difference, this value is subtracted
from 1. This sum is then normalized using the total number
of rounds played. The metric is defined as follows:

U ′3 =
1

|C|
∑
j∈C

[
1

N

N∑
m=1

(
1

T

T∑
t=1

[
1− |xmt − (jmt − 1)|

max(A)−min(A)

])]
where:
• N is the number of matches played between each pair

of competitors;
• T is the number of rounds to be played in each match;
• |C| is the number of competitors in the tournament.

6. Results and Analysis
The Traveler’s Dilemma Tournament that we have experi-

mented with involves a total of 38 competitors (i.e., distinct
strategies). Each competitor plays each other competitor (in-
cluding its own “twin”) 100 times. Each match is played for
1000 rounds. No meta-knowledge or knowledge of the future
is allowed: learning and adaptation of those agents whose
strategies are adaptable takes place exclusively based on the
previous rounds in a match against a given opponent without
a priori knowledge of that opponent. For definitions of the
shorthand notation used in the sequel, see [14]. Throughout
the rest of the paper, we assume the default version of ITD:
the space of allowable bids is the interval of integers [2,
100], granularity of bids is 1, and the Bonus/Malus is equal
to 2.

[Note: due to space constraints, we do not include the
tabulated tournament results with respect to metric U ′3. ]

The top three performers in our tournament, with respect
to the earned dollar amount as the bottom line (metric
U1), are three “dumb” strategies that always bid very high.
Interestingly enough, randomly alternating between the high-
est possible bid ($100) and “one under” the highest bid
($99) slightly outperforms both “always max. possible” and
“always one under max. possible” strategies. We find it

Table 1: Ranking Based on U1
0.760787 Random [99, 100]
0.758874 Always 100
0.754229 Always 99
0.754138 Zeuthen Strategy - Positive
0.744326 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.703589 Simple Trend - K = 3, Eps = 0.5
0.681784 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.666224 Simple Trend - K = 10, Eps = 0.5
0.639572 Simple Trend - K = 25, Eps = 0.5
0.637088 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.534378 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.498134 Q Learn - alpha= 0.2, discount= 0.0
0.497121 Q Learn - alpha= 0.5, discount= 0.0
0.496878 Q Learn - alpha= 0.5, discount= 0.9
0.495956 Q Learn - alpha= 0.2, discount= 0.9
0.493640 Q Learn - alpha= 0.8, discount= 0.0
0.493639 Buckets - (Fullest, Highest)
0.493300 Q Learn - alpha= 0.8, discount= 0.9
0.492662 TFT - Low(y-g) Equal(x-g) High(x-g)
0.452596 Zeuthen Strategy - Negative
0.413992 Buckets - PD, Retention = 0.5
0.413249 Always 51
0.412834 Buckets - PD, Retention = 0.2
0.408751 Buckets - PD, Retention = 0.8
0.406273 Buckets - (Fullest, Random)
0.390303 TFT - Simple (y-1)
0.387105 Buckets - (Fullest, Newest)
0.334967 Buckets - (Fullest, Lowest)
0.329227 TFT - Simple (y-2)
0.316201 Random [2, 100]
0.232063 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.164531 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.136013 TFT - Low(x) Equal(x) High(y-g)
0.135321 TFT - Low(x) Equal(x-2g) High(y-g)
0.030905 TFT - Low(x-2g) Equal(x) High(y-g)
0.030182 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.026784 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.024322 Always 2

somewhat surprising that the performance of Tit-for-Tat-
based strategies varies so greatly depending on the details
of bid prediction method and metric choice. So, while a
relatively complex TFT-based strategy that, in particular,
(i) makes a nontrivial model of the other agent’s behavior
and (ii) “mixes in” some randomization, is among the top
performers with respect to metric U1, other TFT-based
strategies have fairly mediocre performance with respect
to the same metric, and are, indeed, scattered all over the
tournament table. In contrast, if metric U3 is used, then the
simplest, deterministic ”one under what the opponent did on
the previous round” TFT strategy, which is a direct analog of
the famous TFT in Axelrod’s Iterated Prisoner’s Dilemma, is
the top performer among all 38 strategies in the tournament
– while more sophisticated TFT strategies, with considerably
more complex models of the opponent’s behavior and/or
randomization involved, show fairly average performance.
Moreover, if U3 is used as the yardstick, then (i) 3 out of the
top 4 performers overall are TFT-based strategies, and (ii) all
simplistic TFT strategies outperform all more sophisticated
ones.

Not very surprisingly, the top (and bottom) performers
with respect to metric U1 and those with respect to U2 are
practically inverted; so, for example, the very best performer



Table 2: Ranking Based on U2
0.984342 Always 2
0.924474 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.915263 TFT - Low(x-2g) Equal(x) High(y-g)
0.887500 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.845132 TFT - Simple (y-2)
0.839868 TFT - Low(x) Equal(x-2g) High(y-g)
0.832368 TFT - Low(x) Equal(x) High(y-g)
0.791842 TFT - Simple (y-1)
0.727105 Buckets - PD, Retention = 0.2
0.681842 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.669079 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.653816 Buckets - PD, Retention = 0.5
0.629605 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.622632 TFT - Low(y-g) Equal(x-g) High(x-g)
0.616711 Buckets - PD, Retention = 0.8
0.558158 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.557368 Buckets - (Fullest, Newest)
0.539342 Simple Trend - K = 25, Eps = 0.5
0.528421 Buckets - (Fullest, Lowest)
0.491842 Random [2, 100]
0.483684 Simple Trend - K = 10, Eps = 0.5
0.480789 Buckets - (Fullest, Random)
0.463816 Buckets - (Fullest, Highest)
0.455000 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.407500 Simple Trend - K = 3, Eps = 0.5
0.303158 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.260263 Q Learn - alpha= 0.5, discount= 0.0
0.255658 Q Learn - alpha= 0.8, discount= 0.0
0.253289 Q Learn - alpha= 0.8, discount= 0.9
0.252763 Q Learn - alpha= 0.2, discount= 0.0
0.249605 Q Learn - alpha= 0.5, discount= 0.9
0.247237 Q Learn - alpha= 0.2, discount= 0.9
0.200000 Always 51
0.183289 Zeuthen Strategy - Negative
0.092368 Always 99
0.066711 Random [99, 100]
0.040789 Zeuthen Strategy - Positive
0.013289 Always 100

with respect to U2 is the strategy “always bid $2” (which
also happens to be the only non-dominated strategy in
the classical game theoretic-sense). On the other hand, the
three best performers with respect to U1 are all among
the four bottom performers with respect to U2, with the
only strategy that may maximize social welfare (bidding
$100 against a collaborative opponent) falling at the rock
bottom of the U2 ranking. The main conclusion we draw
from this performance inversion is that when a two-player
game has a structure that makes it very far from being zero-
sum, the traditional precepts from classical game theory
on what constitutes good strategies are more likely to fail.
This does not mean to suggest that classical game theory is
useless; rather, we’d argue that the appropriate quantitative,
mathematical models of rationality for zero-sum, or nearly
zero-sum, encounters aren’t necessarily the most appropriate
notions for games that are rather far from being zero-sum.

Returning to our tournament results, what we have found
very surprising is the relative mediocrity of the learning
based strategies: Q-learning based strategies did not excel
with respect to any of the four metrics we studied. On the
other hand, it should be noted that the adaptability of Q-
learning based strategies apparently ensures that they do not
do too badly overall, regardless of the choice of metric.

Table 3: Ranking Based on U3
0.973118 Buckets - PD, Retention = 0.2
0.970587 Buckets - PD, Retention = 0.5
0.970356 TFT - Simple (y-1)
0.968923 Simple Trend - K = 10, Eps = 0.5
0.967860 TFT - Low(y-g) Equal(x-g) High(x-g)
0.965654 TFT - Simple (y-2)
0.962212 Simple Trend - K = 3, Eps = 0.5
0.959252 Buckets - PD, Retention = 0.8
0.955886 Simple Trend - K = 25, Eps = 0.5
0.953725 Buckets - (Fullest, Newest)
0.945405 Buckets - (Fullest, Random)
0.945222 Buckets - (Fullest, Lowest)
0.943694 Buckets - (Fullest, Highest)
0.919699 Mixed - TFT (y-1), 80%); (R[99, 100], 20%)
0.908562 Mixed - L(y-g) E(x-g) H(x-g), 80%); (2, 20%)
0.899511 Mixed - L(x) E(x) H(y-g), 80%); (100, 20%)
0.864914 TFT - Low(x) Equal(x) High(y-g)
0.863831 TFT - Low(x) Equal(x-2g) High(y-g)
0.823397 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 20%)
0.822670 Random [99, 100]
0.820128 Always 99
0.818674 Always 100
0.817728 Zeuthen Strategy - Positive
0.803646 Q Learn - alpha= 0.2, discount= 0.9
0.801725 Q Learn - alpha= 0.5, discount= 0.0
0.801380 Q Learn - alpha= 0.2, discount= 0.0
0.800006 Q Learn - alpha= 0.5, discount= 0.9
0.798992 TFT - Low(x-2g) Equal(x) High(y-g)
0.798681 TFT - Low(x-2g) Equal(x-2g) High(y-g)
0.798417 Always 2
0.798402 Q Learn - alpha= 0.8, discount= 0.9
0.798277 Mixed - L(x) E(x) H(y-g), 80%); (2, 20%)
0.797728 Q Learn - alpha= 0.8, discount= 0.0
0.758573 Mixed - L(x) E(x) H(y-g), 80%); (100, 10%); (2, 10%)
0.751044 Mixed - L(y-g) E(x-g) H(x-g), 80%); (100, 10%); (2, 10%)
0.741721 Always 51
0.521901 Zeuthen Strategy - Negative
0.518840 Random [2, 100]

Furthermore, the choice of the learning rate seems to make
very little difference: for each of the four metrics, all three
Q-learning based strategies show similar performance, and
hence end up ranked adjacently or almost adjacently.

Another interesting result is the performance of Zeuthen-
based strategies. ITD as a strategic encounter is not of a
negotiation nature, hence we have been criticized for even
considering Zeuthen-like strategies as legitimate contenders
in our tournament. However, excellent performance of the
Zeuthen strategy with positive concessions only (at least
w.r.t. the “bottom line” metric U1) validates our approach.
Interestingly enough, the same strategy does not perform
particularly well w.r.t. metric U3. It is worth noting, how-
ever, that the only three strategies that outperform Zeuthen-
positive with respect to U1 perform similarly to Zeuthen-
positive with respect to U3. Those strategies perform only
slightly better than Zeuthen and way below the best perform-
ers with respect to U3, namely, the bucket-based, simplistic
TFT-based, and simple-trend-based strategies.

Finally, given the performance of Zeuthen-negative (the
variant allowing negative “concessions”) with respect to all
metrics, it appears that “enticing” the opponent to behave
differently indeed does not work when the “concessions” are
not true concessions. Intuitively, this makes a perfect sense;



our simulation results provide an experimental validation of
that common-sense intuition.

Due to space constraints, further analysis of our tourna-
ment results is left for the future work.

7. Summary and Future Work
We study the Iterated Traveler’s Dilemma two-player

game by designing, implementing and analyzing a round
robin tournament with 38 distinct participating strategies.
Our detailed analysis of the performance of various strategies
with respect to several different metrics has corroborated
that, for a game whose structure is far from zero-sum, the tra-
ditional game-theoretic notions of rationality and optimality
may turn out to be rather unsatisfactory. Our investigations
raise several interesting questions, among which we are
particularly keen to further investigate the following:

(i) To what extent simple models of reinforcement learn-
ing, such as Q-learning, can be really expected to help
performance?

(ii) To what extent complex models of the other agent
really help an agent increase its payoff in the repeated play?

(iii) Why are performances of various TFT-based strate-
gies so broadly different from each other? This opens
up interesting questions from meta-learning [19, 20] and
meta-reasoning standpoints: how can one design TFT-based
strategies that are likely to do well across tournaments (that
is, choices of opponents) and across performance metrics.

(iv) What effects on strategies and their performance
would an adjustment in the bonus/malus have? For prior
research on how human behavior changes with a change in
bonus/malus, see [7] and [12].

In our future work, in addition to more detailed analysis of
the existing strategies and study of some new ones, we plan
to pursue a systematic comparative analysis of how groups
of closely related strategies perform against each other when
viewed as teams. We also plan to further investigate other
notions of game equilibria, and try to determine which such
notions adequately capture what our intuition would tell us
constitutes good ways of playing the iterated TD and other
‘far-from-zero-sum” two-player games.
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